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NONLINEAR OSCILLATORS
UNDER DELAY CONTROL
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ABSTRACT. In this paper, oscillations and stability of nonlinear oscillators with time
delay are studied by means of the asymptotic method of nonlinear mechanics. Harmon-
ic, superharmonic, subharmonic and parametric resonances of a Duffing’s oscillator are
analyzed. Analytical method in combination with a computer is used.

1. Introduction

The harmonically forced Duffing’s oscillator with time delay state feedback has
been investigated in [1] by using the method of multiple scales [2). Both primary
and 1/3 subharmonic resonances of the Duffing’s oscillator with weak nonlinearity
and weak delay feedback have been examined. As shown in {1] the simplest model
for various controlled nonlinear systems, e.g., active vehicle suspension systems
when the nonlinearity in tires is taken into account, is described by a second order
differential equation with time delay in the form

d?z(t
-dat:g_) + :L'(t) = —2¢

dz(t) dz(t — A)

— pz3(t) + 2uz(t — A) +2v o

+2pcos At, (1.1)

where £, u, u, v and A are constants.

To study all possible simple resonances in the dynamic system governed by
equation (1.1), in the present paper it is supposed that between the external
frequency A and the natural frequency 1 there exists a relationship of the form

A =n+eo, (1.2)
where n = P is a rational number, p and ¢ are integers. We supi)ose that pa-
q

rameters £, u, u, v are small. The smallness of these parameters is insured by
introducing small positive parameter .
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2. Harmonic Resonance

Assuming that n = 1 and f is a small quantity of € - order, we can rewrite
equation (1.1) in the form

2
dz(t) + A%z(t) = e(20z + F), (2.1)
Cdiz
where
dz(t — A :
F= —-2613%2 — uz3(t) + 2uz(t — A) + Zv% + 2pcos At. (2.2)

The solution of equation (2.1) is found in the form
z(t) = acos ¥(t), W(t)=At+4.

dz(t)
Tdt

where a and 6 are unknown functions. By substituting these expressions into (2.1)

= —aAsin ¥(t), (2.3)

da db .
and solving for 22 27 we obtain the following equations for a and 0:

dt dt
da =—£(20z+F)sin\Il,
da-—£(2az+F)cos\Il 24
Yo~ X '

In the first approximation we can replace the right hand sides of (2.4) by their
averaged values:

da _ ——(aL+ps1n0),
gto . (2.5)
€
az = _X (M— gua ) +pcosﬂ],

where

L = £X + usin(AA) — v cos(AA),

(2.6)
M = o + ucos(AA) + Avsin(AA).

The stationary solution of (2.5) is @ = ap = const, § = 8 = const which
satisfy the relationships:

aoL + psinly = 0,
3 (2.7)
2
ag (M - g,uao) + pcosfy = 0.
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From here we obtain:

3 \2
W(ad,A) = a3 [22 + (M - Zua2) | -2 =0, (2.8)
L
tgho = — - (2.9)
M — glmg

The resonance curves are presented in Fig. 1 for the parameters: p = 0.05, £ =
0.05, u = 1.5 and for various values of u,v: v = v = 0.05, A = 0 (curvel),u = v =
0 (curve2),u = —v = 0.05 and A =0 (curve3), A = 0.5 (curve4), A = 1 (curve5).
Curve 1 corresponds to the case of an ordinary Duffing’s oscillator without friction.
Curve 2 corresponds to the well-known Duffing’s oscillator without time delay.
Curve 3 also represents the Duffing’s oscillator without time delay and with a -
viscous friction 2(¢ — v)Z two times larger than in the previous case. Hence, the
maximum of the amplitudes strongly decreases. By increasing time delay (curves 4,
5), the resonance curves lean toward the right and the maximum of the amplitudes
slightly decreases.

—
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Figure 1a ' Figure. 1b

F igure 1. Resonance curves in the case of harmonic resonance

To study the stability of stationary solution ag, 8o ‘we use the variational
equations obtained from (2.5) by letting a = ao + 6a, § = 8y + 66. Thus, we have

3

déa =-£ [L6a - ao<M - —p.ag>60] ,
dt A 8

dée ¢ 9 2\s L b0 (2.10)
(R
The characteristic equation for this system of equations is
2eao e? 3 9
2 i 2 - - 2 _ 2 -
app” + ; Lp + )‘2“(’ [L + (M Suao) (M 8#%)] = Q.
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Taking the expression (2.8) into account we can write this equation in the form:

0P X aols - p 22 0 80,3 =
Hence, the stability conditions will be
1) L>a (2.11)
ow
2) — . 2.
) 3a; >0 | (2.12)

It is easy to identify the stability zone by using the rule stated in [3]. In Figure
1 the stable branches are represented by solid lines, while the unstable branches -
by broken lines. It seems that time delay plays the same role as friction, decreasing
the amplitudes and stabilizing the oscillations.

3. Superharmonic resonance of third order

1 . .
Supposing that n = 3’ we have the equation (1.1) in the form:

d?z(t)
di2

+ 922 . z(t) = e[6eoz(t) + Fo] + 2pcos At, (3.1)

where
dz(2) da(t — A)
dt dt

We transform equation (3.1) into a system of two equations of the first order
relative to the amplitude a and phase # as follows: ‘

Fo=-2¢ — uz3(t) + 2uz(t — A) + 2v (3:2)

z(t) = acos(3At + 0) + 2p. cos At,

d”;(tt) = —3Xasin(3)t + 6) — 2)p, sin At, (3.3)
N
P+ = 8z

It is easy to find the equations for @ and 4 :

da _ ——E—(6¢mcos ¥ + Fp)sin ¥,
dt 3 (3.4)
ail2 = ——E—(6aacos ¥ + Fy)cos ¥
dt ~ 3X ° ’
where
U =3\t +0. (3.5)
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In the first approximation we can replace the right hand sides of (3.4) by their
averaged values. Hence, we have the following averaged equations:

da £
a—t:ﬁ( aL; + up; siné) (5.
3.6
dd ¢ 3 3
o = ﬁ[ a(Ml ghe ) + up; cosﬂ],
where
L, = 36X+ usin2)A — 3vAcos3AA,
My =30 — 3uf? 4+ ucos(3MA) + 3vAsin(3)A), (3.7)
E0c = X — 1 .
’ 3

Stationary solution a = ag, 8§ = 04 of equétions (3.6) satisfies relationships:

aoLy = pp?sin by,

3 (3-8)
ao(Ml - 'S‘Imczy) = up? cos bo.

Eliminating the phase 8, we obtain the following equation for the resonance
curves:

Wi(al, ) = a2 [L2 (Ml - —yao) ] —uipt =0 (3.9

4. Subharmonic resonance of order one third (1/3)

Now,' we consider the case when n = 3 in the relationship (1.2) and when the
equation (1.1) has the form:

d?*z(t)

a2 + ry (t) = 5[2?0.1:( t) + Fo} + 2pcos At, (4.1)

where €0 = A — 3 and F is the same as in (3.2). The solution of equation (4.1) is
found in the form:

z(t) = acos (it + 0) + 2p;. cos AL,

3
(4.2)
dr(t) m\ A
7-— 3 (3t+0)—2/\p1.smz\t
where a and 6 are new variables and
9f
p:l* = —ai . (4.3)
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Substituting expressions (4.2) into (4.1) and solving relative to the derivatives of
a and @ we obtain:

da 3e (20 ]

= = —-—(—a,costp + Fo) sin p,

dt AN3  (4.4)

do _ 3_6(20acos +F)cos .
adt = X 3 ©w 8] w,

where p = %t +0.

Averaging the right hand sides of (4.4) over time, we have the following aver-
aged equations:

% = 3—;—0.( — Lo+ :::-;wpl* sin30>,
do 3¢ 3 3 (45)
a,—‘-i? = Ta( - M; + 5#02 + Zﬂ'apl* cos 30)’
where,
Ly, = %[Ez\ + 3usin (%é) — v cos (:\-Sé)} , (46)

M, = -;:[o —9up?, + 3u cos (%é) + v-z\ an (:\SA—-)]

The stationary solutions a = ag, 8 = 6o of equations (4.5) are determined by the
relationships:

3 . 7 ,
ao (Lz — zMeop1.Sin 390) =0,

. (4.7)
3 , 3
ao (M2 - g/,cao - Zuaopl* cos 300) = 0. ~
By eliminating 6y we obtain:
2 vy _ . 2f7r2 3 0N\%2 9 24 9\ _
Wa(ag,A) = a5y L3 + { M2 ghao Tel PisGo( = 0. (4.8)

Using the last equation we can construct the resonance curves, giving the
dependence of the amplitude ag on frequency A of external force. In Figure 2 the
~ resonance curves are drawn for the parameters p;. = 0.8, { = 0.01, u = 0.02 and
u=1v =0 (curvel), v =0.01, v = —0.01 and A = O (curve 2), A = 0.05 (curve 3),
A = 0.1 (curve 4). The abscissa - axis A corresponds to the zero solution a = 0 of
equations (4.5). Curve 1 is the resonance curve in the ordinary Duffing’s oscillator
without time delay. With the presence of delay elements (u,v) the resonance curve
moves up. The larger the time delay A, the higher the resonance curve (see curves
2, 3,4 for A =0, A =0.05and A = 0.1 respectively).
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Figure 2. Resonance curves in the case of subharmonic resonance

To study the stability of the stationary oscillations we use the variational equa-
tions:

3 9
dba_ ——E[— Lyba + a,o( —3M, + -uag)so],
d . A 8 (4.9)
déd 3e 3 ’
aojd'—t— = —T [ - (M2 + guao)Ga + 3(10.[1250} .
The characteristic equation of this system of equations is of the form:
6¢e 27¢2 W
2 2 _
agp” + Taosz + _)‘Taogc;f = 0. (4.10)
Hence, the stability conditions are
1) Ly >0
oW,
2 0. 4.11
) Ba (4.11)

From the expression (4.8) it is seen that for very small values of ag the function
Ws(a3, ) is positive. Hence, in Figure 3, this function is positive outside of the
“parabola” - resonance curve and is negative inside of this “parabola”. If moving
upwards along a straight line which paralells the ordinate axis ag and cuts the
resonance curve, we go from the zone where W, is negative to the zone where W, is
positive, then at the intersection point of the straight line with the resonance curve
2 . oy . 8W2

is positive. In the opposite case
Bao aaO
rule and taking the conditions (4.11) into consideration we can see that the upper
(lower) branch of the resonance curve corresponds to the stability (instability) of
stationary oscillation. In Figure 3a the stable branches are shown by solid lines
and the unstable branches - by broken lines. Figure 3b shows the dependence of

the derivative is negative. Using this
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L, on M. It is seen that for values interested of A(A = 3 + 3.5) the expression L2
is positive, and the first stability condition (4.11) is satified.

It is easy to see that the zero solution @ = 0 of equations (4.5) is stable,
because the corressponding variational equation is:

déa 3¢
O CL.6
dt 2\ 20

where L, is positive in the interval interested of A(3 + 3.5) (see Figure 2b).

5. Parametric resonance

Let us consider a dynamic system described by the differential equation:

d?z(t)
—"dt—z— + x(t) = EFl, (51)
where
t —
k= —ZE%Q — uzd(t) + 2uz(t — A) + ZUQ-x—(;i—E——é—) + 2pz(t)cos At.  (5.2)

Different from (1.1), here the external force appears as parametric excitation in
the form 2fz(t) - cos At. It is supposed that A = 2 + €0, so that the equation (5.1)
can be written in the form:

diz(t) A? _
a2 Tz(t) = gloz(t) + Fy]. (5.3)

Introducing the amplitude a and the phase 8 as new variables, associated with
z and £ by the formulae:

z= acos(%t +0),

dz A (At ) (5-4)
i 2asm 2 +0),
we have the following equations which are equivalent to (5.3):

%‘—z = —%(oacosn + Fy)sinn,

¢ (5.5)
aé-o- = —gE( + F}) cos
7 =y loacosn+ P n,
A
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In the first approximation, equations (5.5) can be replaced by the following
averaged equations:

d

71% = —E’\(—I(Lg + psin 26),

do £a 3 (5.6)

— e — Sl

adt 3 (M3 4pa, +pcos29),
where A A
Lz = f/\ + 2u sin (—5—) — Av cos (—2—),

(5.7)

M3z = 0 + 2ucos (%é) + Avsin (%)

The stationary solution a = ag # 0, 8 = 6, of equations (5.6) is determined by the,
relationships:
L3 + psin26y = 0,

3 5.8
Mz — 4—ua3 + pcos 28y = 0. (5.8)
Eliminating 8y we get:
2 2 3 % 2 '
W3 (ao, A) = L3 + (M3 - Zﬂao) —-pP = 0. (5.9)

The resonance curves are plotted in Figure 3 for the parameters p = 0.42, £ = 0.1,
p=03,v=v =0 (curve 1), v = 0.05, v = —0.1 and A = 1, (curve 2), A =
0.95 (curve 3). By decreasing the delay parameter, the amplitude of oscillation
decreases. The maximum of the amplitudes is very sensitive to a change_in the
delay parameter. '

Ao ]
100 Ls]
] 034
]
12
430 024
I Y3
| ﬁ .
1 ]
200 0.14 +———————r———1—
150 200 250 A 150 200 250 A
Figgure 3a Figure 3b

Figure 3. Resonance curves for parametric oscillations
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The stabilility of the stationary oscillations obtained is examined by using the
corresponding variational equations:

@ = —g—s-pao cos 20, - 60,

dég 3¢ 2¢e .
7= 2= . = - 66.
ag o 2/\ua° ba + 3 pag sin 20,

where, 6a = a — ag, 60 = 0 — 0y. The characteristic equation of equations (5.10)

is
2¢ 3¢? 3
PPt S Lat S5 ua0(4uag - M3) =o0. (5.11)
It is easy to see that
8W3 3[1, (3
Ms).
6a0 2 4ua0 8
Hence, the stability conditions of stationary solution (ao # 0) are
1) Lz >0
oW,
2 0. 5.12)
) S (5.12)

Since L3 is positive in the interval interested of A(1.5 = 2.5), we then consider
only the second stability condition (5.12). It is easy to identify the sign of the
function W3 in the plane (A, ag), because for ap = 0 and for very large values of
A the function W3 (5.9) is positive. This function vanishes on the resonance curve
and changes sign when crossing the resonance curve. According to the well-known
rule [3] we can see that the upper bra,nch of the resonance curve is stable and the
lower branch is unstable.

In order to study the stabilility of the trivial solution a = 0 of the equatlons
(5.6) it is convenient to use the cartesian coordinate (u,v) instead of the polar
coordinates a and 4 as follows:

y = acos ¥, z = asiné, (5.13)
which gives
dy € 3 ,
G =~ Lo+ (Ms = Jua —p)e],
(5.14)
%='—£[<M _3 a® + ) +L z]
dt \ 3 4N ply 32.
The characteristic equation of this system is
2¢ g2
p?+ T Ler+ )‘—2W3(a?,, A) =0. (5.15)
Hence, the abcissa axis A (a = 0 or y = z = 0) is stable where
L3 >0 and W;(a3,)) > 0. (5.16)
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In other word, on the abscissa - axis A the segments lying outside the interval,
from which the resonance curve is growing up, are stable and the interval lying
inside the resonance curve is unstable (Figure 3a).

6. Parametric excitation of the second degree

Changing the structure of the parametric excitation, we consider the system
described by the differential equation of the form (5.1) with the function F in the
form:

dz(t) dz(t — A)
At dt

here the parametric excitation appears with second degree in z. Supposing that

Fy = -2¢ pzi(t) + 2uz(t — A) + 2v + 2pz%(t) cos At, (6.1)

A =1+eo, (6.2)
we can write equation (5.1) as
2
El%gt) + A%z(t) = e[20z(t) + F3). (6.3)

The solution of equation (6.3) is taken in the form (2.3). The averaged equa-
tions are now:

d 1
g —-E(L-i- -pasinﬂ),
aﬂ——g(M—§ a2+3acosﬂ) .
it~ gt T 4P ’
where, L and M are of the form (2.6). Stationary solutions of equations (6.4) are:
l)ao =0
2)ap # 0 determied by
3 2 9
Wy =9L% + (M - guag) - Epzag = 0. . {8.5)

The stability of stationary solutions a = ap # 0, 8 = 0y is studied by using
the variational equation:

%‘ = ;[L&z + -';—O(M - %ﬂaﬁ) 60]’ (6.6)
oGy = 5[(M + guad) ba - sLaott] .

where da = a — ap, 60 = 0 — 0y, ag #= 0. The characteristic equation of this

system is
2 202 W,
ZLp+ 2. 204, (6.7)

2
Y 32 3aZ
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oW,

a2

1) L>0 ,
oW,

2) 3ag > 0. (6.8)
To study the stability of zero solution ¢ = 0 of equations (6.4) we use the -

transformation (5.13). The equations for y and z are: =~ :

where — (QL2 + M2 — — 2 3) . The stability conditions are
al 4

d

Y= S(-Ly+M2)+...,

dt X

ot (6.9)

: [
;i—t'——x(My‘i'LZ)‘F.,

where the nonwritten terms are the terms with high degree relative to y and z.
The characteristic equation of the linear part of equations (6.9) is:

2 , 3¢ e2 o 2 ,
p +TLp+ F(I’ + M*) =0. : (6.10)

Hence, the stability condition of the zero solution is L > 0.

7. Parametric excitations of the third degree

Suppose the following form of equation (5.1):

- d%z
T2 + 2lt) = <F, | (1.1
where -
dz(t dz(t — A
F3 = -2¢ ZE ) _ pz(t) + 2uz(t — A) + 2det_) + 2qz3(t).cos 2)t, (7.2)
and
A% =1+ e20. (7.3)
In this case we have ’ '
@Cat) | 2, (20z(t) + F. -
L2 1 \a(t) = c(202(s) + ) (7.4)

The solution of equation (7.2) will be found in the form (2.3). In the first
approximation, the amplitude a and the phase 4 are determined by the equations:

da €a /. a?

= __== ~—sin 26

dt ) (L+q g sin2 )’ (7.5
L _ —ca 3 , a? '
a T(M— ghe +q7cos20),
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where L and M are of the form (2.6). The amplitude and phase of stationary
oscillations satisfy the equations:

4L + qag sin26y = 0,

7.6
2(M—-%yag) + ga3 cos 260 = 0. (7.6)
Eliminating the phase 6y we obtain:
2 3 2\2_ 2.4
Vs = 16L2 + 4(M - g;mo) ~¢%ad =o. (1.7)

The stability of stationary oscillations obtained is examined by means of vari-
ational equations:

déa _ [2L6a+ ao (M - E,mg)&sv],
déd » '
ao-a- = —;— (ZM(SG. - 4aoL50) ,

where §a = a — ag, 60 = 0 — 0y, ap # 0. The characteristic equation of system
(7.8) is

N ?’A—ELP + 22:23 : ';v:g =0, (7.9)
where oW, 8 . 3
51 = ‘ag[“ +M(M - gpao)}.
Hence, the stability conditions are
1) L>0
2) g—v:—gi > 0. (7.10).

8. Conclusion

The nonlinear oscillators under delay control described by differential equa-
tions of types (2.1), (3.1), (4.1), (5.1), (6.1), (7.1) have been examined. When the
delay parameter A vanishes we have the corresponding classical nonlinear oscilla-
tors. The appearance of a delay parameter makes the systems under examination
change qualitatively and quantitatively. See, for example, curves 4 and 5 of Figure
la for the case of increasing time delay. The resonance curves lean toward the right
and the maximum of the amplitudes slightly decreases. In Figure 2, by increasing
the delay parameter the resonance curve moves up. The larger the time delay
‘A, the higher the resonance curve. In the case of parametric oscillation (Figure
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3a), by decreasing the delay parameter decreases the amplitude of oscillation. The
maximum of the amplitudes is very sensitive to a change in the delay parameter.
In general, the dependence of the maximum of the amplitudes of oscillations on
the delay parameter A is complicated because this parameter appears under the
functions sinus and cosinus in the expressions L, M (2.6), Ly, M; (3.7), L;, M,
(4.6), Ls, M3 (5.7). Increasing A sometimes leads to decreasing the maximum of
the amplitudes of oscillation, but other times leads to increasing this maximum.

The author is indebted to Dr. Tran Kim Chi for mathematical modeling on
computer and for generating the figures.

This work was supported by the Council for Natural Science of Vietnam.
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CAC CHAN TU PHI TUYEN DUGI SU DIEU KHIEN TRE

Trong bai bdo da nghién ctru cic chin ti phi tuyén dwéi s didu khién tré
md td bdi cdc phuong trinh vi phin dang (2.1), (3.1), (4.1), (5.1), (6.1) va (7.1).
Sw xudt hién y&u t8 tré A da 1am cho céc két qud nghién céu cd dién thay ddi cd
vé lwong va chat. Ching han, quan sit cac dwdng cong 4, 5 trén hinh 1a khi ting
A. Céic dwong cong ndy ngd vé bén phdi va bién d6 cyc dai gidm. Con trén hinh
2, viéc ting A di 1am cho dudng cong hudng dich chuyén 1én cao. Trong trudng
hop dao déng théng s6 (H. 3a), gidm A sé 1am gidm bién dé cwc dai. Néi chung,
s phu thudc cia bién dd cwc dai vao théng s tré rat phirc tap do théng s3 nay
. nim dwéi cic ham sin, cosin qua cac biéu thic L, M (2.6), L1, M; (3.7), L2, M,
(4.6), L3, M3 (5.7). Viéc ting A khéng nhét thi& din téi gidm, ma c6 khi lai
lam t3ng bién 46 cuc dai.
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