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THE INFLUENCE OF SECOND ORDER
NARROW-BAND COLORED NOISES
ON NON-LINEAR RANDOM VIBRATIONS

NGUYEN DONG ANH, NGUYEN Duc TINH
Institute of Mechanics, NCST of Vietnam

ABSTRACT. Since the effect of some nonlinear terms is lost during the first order av-
eraging procedure, the higher order stochastic averaging method is developed to predict
approximately the response of linear and. lightly nonlinear systems subject to weakly ex-
ternal excitation of second order coloured noise random processes. Application to Duffing
oscillator is considered. ’

1. Introduction

For many years the well-known averaging method, originally given by Krylov
and Bogoliubov and then developed by Mitropolskii (Bogoliubov and Mitropolskii,
' 1961) has proved to be a very powerful approximate tool for investigating deter-
ministic weakly nonlinear vibration problems. In the field of random vibration
the averaging method was extended by Stratonovich (1963) and has a mathemat-
ically rigorous proof by Khasminskii (1963). At_present, the stochastic averaging
 method (SAM) is widely used in different problems of stochastic mechanics such
as vibration, stability and reliability problems (see e.g. Ariaratnam & Tam,1979;
Bolotin, 1984; Ibrahim, 1985; Lin & Cai, 1995; Roberts & Spanos, 1986; Zhu,
1988).

It should be noted that principally only first order SAM has been applied in
practice and usually to systems subject tc white noise or wideband random pro-
cesses. It is well-known, however, the effect of some non-linear terms is lost during
" the first order averaging procedure. In order to over come this insufficiency, differ-
ent averaging procedures for obtaining approximate solutions have been developed
(see e.g. Mitropolskii et al, 1992; Red-Horse & Spanos, 1992; Sri Namachchivaya
& Lin, 1988; Zhu & Lin, 1994; Zhu et al, 1997). Recently, a higher order averaging
procedure using Fokker-Planck (FP) equation was developed in (Anh, 1993, 1995)
and then applied to Van der Pol oscillator under white noise excitation (Anh &
Tinh, 1995 ). In the present paper this procedure is further developed to linear
and lightly nonlinear systems subject to weakly external excitation of second order
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narrow-band coloured noise random processes.

2. Narrow-band coloured noise random processes

We consider a stationary coloured noise random process ¢(t) which is the
result of the passage of a white noise through the linear forming filter L of order
2n:

L(e (t))—dz';;‘fh Z o £ _ o) (2.1)

where a;, o are constants, {(t) is a the zero-mean white noise process with unit
intensity

E(£()é(t + 1)) = 8(r) (2.2)

where E(-) is the operator of expectation. It is supposed that all roots of the
characteristic equation for the filter (2.1)

2n—1
Z(u) =p™+ ) au’ =0 (2.3)
=0

have negative real parts. The behaviour of ¢(t) essentially depends on the roots of
the characteristic equation (2.3) and one can get from (2.1) wideband or narrow-
band coloured noise processes, respectively.

2.1. Narrow-band coloured noise

Let the filter L can be expressed in the form

m

L() = Lo(") + eLa() H[ — +wi()] + e () (24)

where L, is also a linear filter of order ¢; m,q < n; wi, k = 1,2,...,m, are distinct
positive values and wy > €. In this case it is supposed that one can get from (2.1),
(2.4) a narrow- band coloured noise process.

2.2. Second order narrow- band coloured noise

Coloured noise of second order p(t) can be obtained by the filter P of the
form

P(p(t)) = B(t) + 2ap(t) + wip(t) = 205/ow1 £(2) | (2.5)
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where a > 0, w;, 02 > . The auto-correlation function and the spéctfal density
function of p(t) are, respectively,

Ry(r) = a;"e“""(cos Vw?—a? 71+ a(w?-a? )—llsin\/w% - a? TI)

8, (w) = 202 ow? (2.6)
? m[(w? - w?)? + 4a2w?]

The bandwidth of the process p(t) is controlled by the value of the parameter a.
For the present analysis the coloured noise p(t) is considered to be a wideband
random process if a.>> €,. If a ~ ¢, i.e. '

a=ca (2.7)

p(t) is a narrow - band process and the filter (2.5) has the form (2.4), where

P =20 400, PO =20 29

3. Excitation of second order narrow-band coloured noise

Consider a lightly damping system subject to external narrow-band second
order coloured noise excitation

i+ wiz = efy(z,2) + €2 fa(z, &) + p(t) (3.1)

where wo is a positive constant, € > 0 is a small parameter, p(t) is determined
from (2.5) and (2.8), f1 and f; are functions of (z, ). In this case one gets m = 1.

Eliminating p(t) from (3.1), using (2.4), one gets

[d;t(z') + w.' (- )] (&+wiz) =P+ Fy+e+ ot Veaié(t) - (3.2)
where it is denoted _
Fy = Lofs — (i +w2s), Fa=Lofa+ Lifi. (3.3)
Suppose
lwo — w,|| >e, sp=0,1, s#p. (3.4)

According to the averaging concept, a stationary solution of (3.2) is found in the
form

t t . T .
d z( ) = aowo cos (gao + zE) + a;wj cos (‘Pl + 1“2->, t= 011’.2’3 - (3.5)

67



where as, a,, p, = 0,1 are new variables. By using Ito differentiation formula the
equation (3.2) is transformed into the following system of equations [11]:

sin
ds = cA1s(a, ) + €*Azs(a,p) + 2+ — Ve oy ” ‘p’ f(t)

cosp (3.6)
"ﬁs=Wa+€Bls(a"p)+€2B28(a"P)+53+"°_\/E w 5 E( )
. 8 8
where it is denoted -
Fi(a,p) . o cos? p,
hfong) = { - B0 g slenteny
ls(a' (P) wsfls st nYs + zaswsng
_ [ Fi(e,9) 0} sin p, cos p, }
Bis(a,p) = { wellgag coses w22q2
Fz(a,P)
A =~ _2\ep)
Fy(a,p
Bys(a,p) = ——ﬁa—a) cOs P, : (3.7
o1 = 202+/; wi
No=-0; =w?-wd, a=(a0,a1), ¥ =(po,p1)
Fy=fi+wif] - 201 (% + wii)
Fy = fo + wifs + 2011
in which
(¢ Z apw cos ((pp +1 2), t1=0,1,2,3. (3.8)

p=0
The Fokker-Planck equation for the stationary probability density function W (a, ¢)
corresponding to the system (3.6) takes form
1

ow
Z wa'a—(p—— = —E[Al, Bl}L(W) - Ez[Ag, Bz]L(W) + 63 N (3.9)
— 8
where the operators [A,, B,|L(:), v = 1,2, are defined as follows
1
17 07}
(40, BLW) = 3 [ 5= (41W) + 5= W) -
2 . . 82 .
_of sinp, sinp, sin g, cos p,
w
2 —~ ;_4;{ 6a88ap ( Wewp{lsw, W) da,0p, (apw,,w,,ﬂ,ﬂp )+
92 COS P COS P, :
3.
Btpaatpp (asapwswpﬂ Q, W)} (3.10)

SN
[A2, Bo]L(W) = ; [aas (A2,W) + 5E(B2’W)]
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where as, a,, 9, = 0,1 are new variables. By using Ito differentiation formula the
equation (3.2) is transformed into the following system of equations [11]:

sinp,
as:sAle(a,go)+€2A28(a,go)+53+-~-—\/6_'01 go f()

X 2 3 cos Ps ¢ (36)
‘Ps =Wy +EBy4(a,p) + €“Basla,p) + €5+ - — \/Ef_’i——ﬁ—f(t)
7 AgWgily
where it is denoted >
Fi(a,¢) . o} cos® p,
o) = [~ B8 gy ol
la(a ‘P) w,Ql, sinp, + 2aawaﬂ§
Fi(a,p) o2sinp,cos p,
B _ { _ Al e) _ }
1o(e ) wallya, P w2242
F2(aa (P)
A = 22\>F)
2s(a, ) wofl,a, %P |
Fy(a, 0
B,(a,p) = _%ﬂsa:) cos P, : (3.7)
01 = 202 /) W)
Qo =-0, = w% —wd, a= (@0,a1), ¥ = (¥o,¥1)
Fy = fi +wify - 20, (% + wi#)
F=f+wifs+2af;
in which .
2O(t) = 3 apwheos (i, +i7), i=0,1,2,3. (3.8)

=0
The Fokker-Planck equation for the stationary probability density function W (a, )

corresponding to the system (3.6) takes form
1

Zws g}:: = —E[Al,Bl}L(W) — 62[A2, Bz]L(W) + 5'3 . (39)

where the operators [A,, By)L(-), v = 1,2, are defined as follows

(An BALOV) = Y- [ o (40,9) + 50 W) -

2 1 2 . . ) 2
oy d sinp, sinp, o sin pg cos p,
2 = =0{aasaap( Wewpflw, ) da,0p, (apw w0, )+
92 Cos (s COS P, .
3.10
3‘Ps¢9§0p<aeapwswpﬂ 1, W)} ( )
1
0
Ag,B3|L(W) = —(Aq, W w
(42, BLW) = 3 [0 (40 W) + 52-(Bs W)
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It can be shown that the operators |A,, By|L(-) are linear ones. We seek then the

solution of (3.9) in the form

W{a,p) = Wo(a,p) + eWy(a, ) + 52W2(a,, ©)+...

Substituting (3.11) into (3.9) yields

9ps dps dps
- 62{[A2,B2]L(Wo) + [Al,Bl]L(Wl)} +...

Comparing the coefficients of like powers of € one obtains

1

ow
o, 0
€ : E “"’ago =0,

s=0 8

el Zwsawl— AlaBl]L(WO)
s=0
1

e? . Zws ?}:2 = —{[Az2, B2]L(Wo) + [A1, B1]L(W1)},

8=0 s

From (3.13) it gives a periodic solution with respect to o as follows
Wo = Wo(a).

Substituting (3.16) into (3.14) yields

1

> we 2 = Ay, BuL(o(a))

8

8=0

W, ow oW.
Zwa[ 0 p el 4y 2222 ] = —g[Ay, B;|L(Wy)—

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

The arbitrary integration function Wo(a) must be chosen from the condition for
the function Wy (e, ©) to be periodic with respect to ¢. Thus, one gets from (3.17)

([[A1, B1]L(Wo(a))]) =0

where (-) is the averaging operator with respect to phase ¢

2% 2w

(2ﬂ E //'(')d‘POdPI

0

69

(3.18)

(3.19)



Substituting (3.10) into (3.18) yields

> {5e((ArWola) - 25 5 ng(a) l-o. (3.20)

8=0

The averaged Fokker - Planck equation (3.20) can be considered as an extension
into the case of narrow - band excitation of the well - known first order averaged
FP equation obtained for the white noise excitation. Further, it is seen that the
averaged FP equation (3.20) is obtained by equating zero the averaged value of
the coefficient of power ¢ in the original FP equation (3.9).

The second term Wj(a, ) in (3.11) is determined from (3.14), using Fourier
expansion

[Ay, B1]L(Wo(a)) = }: chokx ‘(ko¢o+k1§01)’ (3.21)
ko ki
where

2w 2w

Chok, (@) = W//[AI,BI]L(Wo(G) et kovotkioi) g, doy . (3.22)

Substituting (3.21) into (3.14) yields

Chok i(kowo+k
W, (a, ) = Wo(a)|Wio(a) + Xk ikopotkipn) | 3.23
1(a,) = Wo(a)[Wio(a) D3) Dweni e |, (s23)
where
kowo + kywy # 0. (3.24)

The arbitrary integration function Wi(a) must be chosen from the condition
for the function Ws(a, ) to be perlodlc Analogously, one can find third term
Ws(a, ) in (3.11).

4. Application

In order to illustrate the procedure proposed one considers the Duffing system
whose equation of motion takes the form:

i+ wilr = —2ehi — 243 + p(t) (4.1)
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Substituting (3.10) into (3.18) yields

: 2 0'2 BZWO a
2 {£(<A“>W°(“)) N 4w§193 6a§( ) } =0

8=0

(3.20)

The averaged Fokker - Planck equation (3.20) can be considered as an extension
into the case of narrow - band excitation of the well - known first order averaged
FP equation obtained for the white noise excitation. Further, it is seen that the
averaged FP equation (3.20) is obtained by equating zero the averaged value of
the coefficient of power ¢ in the original FP equation (3.9).

The second term Wi (a, ) in (3.11) is determined from (3.14), using Fourier
expansion

[A1, B1]L(Wo(a Z Z Crok, (a)e!FoPotkier) (3.21)
ke ki .
where
1 27 27
- ~t(ko k,
Crok; (a) = W//[AI,BI]L(Wo(a) .. (kowo+ ‘P‘)dSO()dSOl. (3_22)
0 0

Substituting (3.21) into (3.14) yields

¢ ok1 et\fo 1P1
Wi(a,0) = Wo(a) [Wio(a) +ZZ ok o Gaporkien)], (3.23)
where
kowo + kiwy # 0. (3.24)

The arbitrary integration function Wjo(a) must be chosen from the condition
for the function W3(a,p) to be perlodlc Analogously, one can find third term
Wa(a, p) in (3.11). :

4. Application

In order to illustrate the procedure proposed one considers the Duffing system
whose equation of motion takes the form:

.

i+ wlr = —2¢hi — 2423 + p(t) (4.1)
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where h, ¥ > 0, p(t) is a narrow - band random process obtained by the filter
(2.5). In this case one gets:

fi(z, ) = —2hi, fa(z,i) = —qz°. (4.2)

Substituting (4.2) into (3.7) yields:

Fy = —2hayi — ywir® — 3v(2%% + z1?). )
Using (2.10), (3,4) and (4.3) for equation (2.24) one gets:
2 2)2 2
— (wf—wd)" (5 hwd ,
Wo(a) = Cagay exp{ Y — <a1 + El_w?%)} (4.4)

2

(C = const). This solution is the same as the result obtained by using the classical
SAM. Substituting (4.4) into (3.14) and using (3.7), (3.8) and (4.3) after some
calculations one obtains:

Wii(a,p) =
. h a |, 2hwofl 4oqw02 1 )
= ——-s1n2<po—'—1s1n2501+ ( g oaoal— 1 132 )smgoocospl
wo w1 o3 wolly  @cay
2hwi N 4oqwio? 1 .
— ( 20 apay — — 31 2 )coszposmtpl. (4.5)
o3w, wy aoa;

Substituting (4.4) and (4.5) into (3.15) one gets the equation for the arbitrary
function Wjo(a) in the form:

S {2 (A Wo@Wio(@)] - Ty 2 Wo(a)Wio(a)]} =

<=  Ba, 4w2Q2 da?
1
e/ 3y 9 fwo d (w1 3.,

e — (A 8 W, = ~["— ot 3W — | == a7 W, .

; da, [(42,)Wo(a)] 4 Ldag (ﬂoao 0) * da, (ﬂl “ 0)] (4.6)
From (4.6) one gets:
330 4 3y 4 4.7
Wio(a) = 12 (w§Qoad + wial). (4.7)
1

Thus, the second order apprpximate solution of the FP equation (3.9) for the
Duffing system (4.1) takes the form:

W(a, <p) = Wo(a){l + E[Wlo(a) + Wu(a)]} (48)
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where Wy (a), Wi1(a, ) and Wio(a) are defined in (4.4), (4.5) and (4.7) respec-
tively. It is seen from (4.4) and (4.8) that the solution W (a, p) in (4.8) is different
from the solution obtained by using the classical SAM and the effect of the non -
linear term e24z2 is shown in (4.8).

The corresponding approximate mean square E[z?] is to be found

2 2w

oo 0o
E[x2]=////-’Bzw(aﬂp)d‘Podwldaodal- (4.9)
0000

Substituting (4.8) and x = ao cospo + a; cosp; into (4.9), after calculations one
obtains: '

E(z%) =
o0 00 2 2 2 2
wiy —w h
/ /(a0 + al) 1 + ero(a)]aoal exp { - ——————( 1 . J) (a% + w02 ag) }daodal
203 0wy
0 0 '
“"1 ( 2 wy 2 }
2/ 0/[1 + eWyo(a)laoa, exp { 202 ai + - a.o) dagda,
. .
=22 (hwo + i) — 6ew103 (h2wd + adwd) + €2... : (4.10)
hw} (‘*’1 - wo)
Ih the case ¥ = O (linear system) one gets:
2(p,,2 2
E[e?] = 2o o) (4.11)

hwé (wf — w?) 2
It is seen from (4.10) and (4.11) that in the case of Duffing system the mean square
E[z?) reduces in comparison with the linear case.

5. Conclusion

For many years the stochastic averaging method has been a very useful tool
for investigating non-linear random vibration systems. However, the effect of
some non-linear terms cannot be investigated by using the classical first order
SAM. In this paper, the higher order stochastic averaging method is developed to
predict approximately the response of linear and lightly nonlinear systems subject
to weakly external excitation of second order narrow-band coloured noise random
processes. '
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ANH HUGNG CUA KiCH PONG ON MAU DAI HEP BAC HAI
LEN DAO PONG NGAU NHIEN PHI TUYEN

Phwong phép trung binh ngiu nhién bac nhit kinh dién da dwoc 4p dung
rong rai d6i véi cdc hé co hoc phi tuyén. Tuy nhién, hiéu Gng cla nhiéu sé hang
phi tuyén khéng dwoc thé hién khi st dung phwong phdp niy. D& khic phuc
nhwoc diém trén, phwong phép trung binh ngiu nhién bac cao da dwgc phét trién
d8i véi céc hé co hoc phi tuyén chju kich ddng ngiu nhién dang on tring. Trong
bai bdo niy, phwong phép ti€p tuc dwoc trinh bay d6i véi cidc hé phi tuyén yéu
chiu kich déng ngiu nhién dang 5n mau dai hep bic hai. Sau dé phwong phdp
dwoc 4p dung &€ x4c dinh nghiém x4p xi bic hai cia phwong trinh Fokker - Planck
d6i véi hé dao dong dang Duffing.
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