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A FORM OF EQUATIONS OF MOTION OF
A MECHANICAL SYSTEM IN QUASI-COORDINATES
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Hanot University of Technology, Vietnam

ABSTRACT. In [3, 4, 5] the form of equations of motion in holonomic coordinates has
constructed. The equations obtained give an effective tool for investigating complicated
systems.

In the present paper the form of equations of motion is written in quasi-coordinates,
These equations are solved with respect to quasi-accelerations, which allow to define the
motion of a holonomic and nonholonomic systems by a closed set of algebraic - differential
equations. The reaction forces of constraints imposed on the system under consideration
are calculated by means of a simple algorithm.

For illustrating the effectivness of this form of equations an example is considered.

1. Introduction

As known {1, 6, 7], in some cases the expression of kinetic energy of a mechan-
ical system is written conveniently in quasi-velocities, for example, in the case of
bodies moving about a fixed point. For nonholonomic systems the constraints are
often written in quasi-velocities, for example, a rigid body rolls without sliding on
a plane. In such a case, we can apply the Lagrange’s equations with multipliers
or the equations in quasi-coordinates. However, as shown in [6] these methods are
very complicated.

In connection with this, for the method of Lagrange’s multipliers it is neces-
sary to eliminate undeterminate multipliers, but for the Lagrange’s equations in
quasi-coordinates we have to calculate complicated indices. These problems can
be avoided by means of generalizing the equations obtained in [3, 5].

2. Equations of motion of a holonomic mechanical system in quasi-
coordinates

Let us consider a holonomic mechanical system of n degrees of freedom. De-
note by ¢; the Lagrangian coordinates and by Q;-generalized forces (i = 1,n).
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Kinetic energy of the system under consideration is of the form

l.p, .
szfA% (2.1)

where A is a quadratic, symmetric, and nonsingular matrix of n order, the elements
of which depend only on Lagrangian coordinates, i.e., A = A(q), but @ - then x 1
matrix of generalized velocities, that is

a’ = ||g1 gz --- én”- . (2.2)

The letter T at the high right corner designates the transposition.

As known [3], the equations of motion of a holonomic system can be written
in the form

AGg=G+Q, (2.3)

where Q is the n X 1 matrix of generalized forces, i.e.,

QT =|Q1Qz2 ... Qul| ' (2.4)

and the n X 1 matrix G is determined only by the matrix of inertia A and q is
the matrix of generalized accelerations

Q" =|d1 G2 ... G- (2.5)
Let us introduce now quasi-coordinates o; (i = 1,n) of the form

i =Y Cijds, (2.6)

where: C;; = Ci;j(91,92,...,9n) make quadratic and inversible matrix C of n-
order. ‘The relations (2.6) can be written in the matrix form as follows:

o=Caq, (2.7)

where @ is an n» X 1 matrix.

Because of the nonsingular matrix C, we have
q=C°g, (2.8)

where C° is the inverse of the matrix C, i.e., CC° = C°C = E (E - the identity
matrix).
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It is clear, that the elements of the matrix C° depend only on generalized

coordinates, i.e.,
C° = C°(q), < (2.9)

where C° is a quadratic matrix of n order too.
Derivating (2.8) we obtain
=C°s+ C°6, (2.10)
where C° is an n X n matrix, the elements of which are the derivation with respect
to time of corresponding elements of the matrix C.
Substituting (2.10) into (2.3) we obtain the equations descnbed motlon of the
system under consideration
A°o = Go + Qo +‘o, (2.11)
where .
A°=AC° ¢o=-AC°q, - (2.12)

but Go, Qo are just the matrices G and Q respectively, in which the generalized
velocities are substituted by quasi-velocities from (2.8). This is realized on the
matrix C too.

Because the matrices A and C° depend only on Lagrangian coordinates, then
the matrix A° from (2.12) depends only on Lagrangian coordinates, i.e.,

A° = A°(q). (2.13)
From (2.12) it is possible to follow
A=A°C. (2.14)

In other words, we can calculate the matrix of inertia A from the matrix A°.

This is necessary to notice, because in some cases the kinetic energy is written
in quasi-velocities.

Let us consider the kinetic energy of the form

T= % 5T A* 6. (2.15)

By means of the formula (2.7), the expression of kinetic energy (2.15) can be
written as follows:

1
T= 5<°;Tc"".:ch. (2.16)
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Comparing (2.16) with (2.1) we immediately draw:
A=CTA*C. (2.17)
By means of (2.17) the matrix A° in (2.11) takes the following form:
A°=AC°=CTA*CC°=CTA". (2.18)
In accordaﬁce with (2.18) the matri)? ¢o in (2.11) will be now
4»0=—A(':%:—A(’:°cq=Ac°Cq=cTA*Cq. (2.19)

Thus, in the case of the kinetic energy (2.15) the equations of motion of the system
under consideration are written in the form (2.11), in which the matrix A° takes
the form (2.18), but ¢ - (2.19).

In such a way it is possible to avoid the calculation of the inverse of the matrix
C in the establishment of equations of motion.

It is easy to see that although the expression of kinetic energy written in
quasi-velocities, for example, by (2.15), the equations of motion can be written in
Lagrangian coordinates too.

Indeed, the equations (2.3) in consideration (2.17) are written in the form
CTA*CG=G+Q. (2.20)
3. Equations of motion of a nonholonomic system in quasi-coordi-

nates

Let us consider a mechanical system, the position of which is described by n
Lagrangian coordinates (¢ = I,n). Suppose that the constraints imposed on the
system under consideration are of the form

n .
Z bridt' = 0’ T =,-1_s-';a (3'1)
=1
which can be written in the matrix form

bg =0, (3.2)

where b is an s X n matrix, the coefficients of which depend only on Lagrangian
coordinates, i.e., b = b(q). Let introduce the quasi-coordinates of the form (2.7).
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As known [2, 5] the equations of motion of the system considered can be written
as follows
AGg=G+Q+R, (3.3)

where R is the matrix of reaction forces of the constraints (3.1).

As shown in [5], it is possible to eliminate the reaction forces R from the
equation (3.3) by means of the condition of ideallity of the constraints (3.1). By
means of such a way we obtain

DA§G=DG+DQ, (3.4)

where D is the transpose of the matrix, the elements of which are the coefficients
in the expression of accelerations in term of independent accelerations in consid-
eration of the constraints (3.1).

Substituting (2.10) into (3.4) we have

D'6=G"+ Q" +¢", (3.5)

where
D*=DAC°, (3.6)
G'=DGy, Q*=DQo, ¢ =Déy=-DAC°0, (3.7)

where Go, Qo, ¢o take the same meaning as in (2.11). The equations (3.5) and
(3.2) describe the motion of the system under consideration.

The matrices G*, Q* and ¢* are the k& X 1 matrices, but D* - the k x n
matrix.

It is important that among quasi-velocities (2.6) we can choose the left ex-
pressions of the constraint equations (3.1). In other words, we can take

Coj=by r=k+Lmj=Tnk=n-—s (3.8)

In such a case the constraint equations (3.1) take the following form

n :
ZC,jquﬂ, r=k+1n k=n—s. (3.9)
=1

This is equivalent to
6,=0 r=k+1,n, k=n—s. (3.10)
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Equations of motion of the considered system can be written in the form (3.5),
in which the quasi-velocities and quasi-accelerations takes zero-values, i.e., 6, =

6, =0 (r=k+1,n). :
Equations of motion of the system under consideration will be now
D'6=G +Q +4¢, ‘ (3.11)
where @ is k£ X 1 matrix, which is obtained from &, after striking out s last row,
but D is just the matrix D* in which the s last columns are striked out.

It is noticed that for applying the equations (3.5) or (3.11), it is necessary to
calculate the inverse of the matrix C. As above mentioned, this can be avoided
(3.12)

by means of using (2.18) and (2.19), i.e.
D*=DCT A",
¢*=DCTA*Cq. (3.13)

Note
1) In the case of the constraint equations written in quasi-velocities, for cal-
culating the matrix D, it is uneccessary to rewrite these equations in the form of

(3.14)

Suppose that the constraint equations are written in the form

Lagrangian velocities.
n
ZC,J'O:]"‘—:O, =Ic+1,n.
j=1

As shown above, we can choose k independent quasi-velocities ¢, (1 = T,—E), but
(3.15)

r dependent quasi-velocities have the form
n
6, =) Cridj, r=Fk+Ln.
j=1 '

In accordance with (3.14) we define the n x k matrix D, so that
& =D, 60, (3.16)
where
o5 =| 6165 ... 6 (3.17)
67 = |61 63 ... oy ... 6. (3.18)

and
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Assume that the independent quasi-velocities are expressed through independent
Lagrangian velocities, that is

k
oe =Y Levdy, €=1F. (3.19)
v=1

The relations (3.19) can be written in the matrix form
o0 = L qo, | (320)

where L is the k x k matrix of the elements £¢, (£,v = 1,k), but qo is the k x 1
matrix of independent Lagrangian velocities, i.e.,

ag = | d1 d2 --- dk - (3.21)
After some transformations, we obtain

) >oT
D =LTDIc°". o (3.22)

2) It is possible to obtain the equations of motions in Lagrangian coordinates,
although the expression of the kinetic energy is written in quasi-velocities.

Indeed, from (2.18) we have
A=cCcTA*cC. (3.23)

By means of (3.4) we write the equations of motions of the system under consid-
eration in the following form

DCTA*CGg=DG+DQ. (3.24)

Example. Write equations of motion of a uniform sphere of mass M and radius
a, which rolls without sliding on a fixed horizontal plane [6].

Assume that the Ozyz principal axes are in the translated motion together
the mass center O. Denote by A, B,C the moments of inertia of the sphere about
the principal axes. Because of the uniformity of the sphere then

A=B=C-= §Ma2.
The kinetic energy of the sphere is calculated by the formula

1 12
T = EM(:BS + 98) + 3 gMa2 (w? + w? + w3), (3.25)
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where w;, w2 and w3 are the projects of angular velocity of the sphere on the fixed
axes.

The condition of rolling without sliding is written as follows [6]

£o — a(syb + s0CP) =0,

] 3.26
Yo + a(C8 + sfsypp) = 0, (3.26)

here and bellow we use following stbols )
sY =siny, Cy =cosyp, s =sind, C@ = cosd,...
Let us choose the quasi-velocities 01,02,03,04 and o5 in the form -
61 =wy, O3=uwy, 0O3=uws,
04 = &0 — a(sph + s6Cy @) = wy, (3.27)
05 = Yo + a(CtZ:é + 8Os ) = ws.

By means of (3.27) the expression of the kinetic energy (3.25) is written in the
form '

7 2
T = % M[ga2(w§ +w?) + ga2w§ + 2awpwy — 2a,w1w5)]. (3.28)
Because of the Euler formula (see, for example, [1, 6, 7))
wy = CYl + s8s¢ , .
wy = sy b + s6CY o, (3.29)
wg = COS + 4,

the transformation matrix C takes the form

Cy s8syy O 0 O
sy —s0Cy¥ 0 0 O
c=| o w 100 (3.30)
—asy asfCy O 1 O
aCy asfsyy 0 0 1
From here we calculate the translated and derivated matrices
Cy sy 0 —asyp aCy
sfsyy —s0CY CO asfCy aslsy
cT=| o 0 1 0 0 , (3.31)
0 0 0 1 0 ,
0 0 0 0 1
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—sp  (COsph+20CYY) 0 0 0O
] Cyyp (—COCy0+sbsyyp) 0 0 O
C=| o -s06 000 (3.32)
—aCyyy a(COCYI —sfsyy) 0 0 0
—asy  a(ClOsypd+s6Cy¥y) 0 0 O
In accordance with (3.28) the matrix A* has the form
%MJ 0 0 0 —Ma
0 ‘M 0o Ma o
A= 5 9 (3.33)
0 0 gM«ﬁ 0 0
0 Ma 0 M 0
—Ma 0 0 0 M
By (2.17) we calculate the matrix of inertia A
202
-5-M a 0 0 0 O
0 2Ma>  iMa*co o o
A=CTA*C= 90 5, (3.34)
0 EM a’Ce gM a? 0 o0
0 0 0 M o0
0 0 0 0 M
In accordance with the matrix (3.34) we draw the 5 X 1 matrix G
2 . . .
GT = ” ~=MaCogy §Ma2s0¢v0 %Ma%wpo 0 0 ” . (3.35)
From (3.26) we calculate the 3 x 5 matrix D
1 00 asy —aCy
D=|l0 1 0 —asfCy —asbsy . (3.36)
0 0 1 0 0 :

The 3 x 5 matrix D* is calculated by (3.12), but the 3 x 1 matrix ¢* - by (3.13),
they are

D*=DCTA*=
-;—Maz(hﬁ %Mazst,b 0 Masy —~MaCy
%Ma,szst/) —gMazsﬂCtp %Ma2C0 0 o | , (3.37)
0 0 -z-Maz_ —Mas0Cy —Maslsy
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§Ma2s0¢¢

¢$'=DCTA*Cq= ——gMazsmM : (3.38)

—§M a2s00¢

As shown in [6], the 5 x 1 matrix of generalized forces corresponding to Lagrangian
coordinates are

QT =|mg my my Vi Vi . (3.39)

Following (3.7) in accordance with (3.35) and (3.39) we have

2 .
—gMa,zsaqél,/) + mg — a(Visy — Va2Cy)
2

G'+Q"=D(GE+Q)=°

Ma?s06 + m, — asb(V,C + Vasyp) || - (3.40)

2 .
gM a?s0p0 + my
Now, equations of motion of the system by (3.5) take the form

7 )
%Mcﬂcwl + gMazstlw'Jg =M — 0+ a(Vysy — Vo,Cy),

7
-;—Mazsﬁstbdzl — gMaZSOCdeJz + -§-Ma200cb3 =mg, — a(ViCy + Vasyp)sh,

2
gMazd)s = My - (3.41)

These equations together with constraint equations (3.26) describe the motion of
the system under consideration.

It is easy to see that after some simple transformations the equations (3.41)
coincide with the equations obtained in [6] (see [6] pp. 374).

It is noticed that applying the equations (3.24) we obtain the equations of
motion of the system considered in the form

—§—Ma25 + Ma(iosy — §oC) = ——i—Mazsﬂt,bijJ + M ~ a(Vysy — V3,C),
. 2 ..
-§-Ma2(¢ + COY) — Ma(ZoCy + fosy) = gMazsat,bB + my — asf(V,CyY + Vasyh),
2 “ 2 .
-5—Ma2(1/) + COp) = gMa2sa<po + my,. (3.42)
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These equations are equivalent to the ones (3.41). However, equations (3.42)
coincide completely with the equations obtained in [6] (see [6] pp. 375).

Note.

In order to determine the reaction forces of constraints, it is possible to apply
the equations (3.3), in which accelerations, velocities and coordinates are known
after integrating the equations of motion, that is

R = A(t) 4(t) - G(t) - Q(1).  (343)

4. Conclusions

Up to now only the Lagrange’s equations with multipliers or the Lagrange’s of
a mechanical system equations in quasi-coordinates are used for writing equations
of motion when the expression of kinetic energy or constraint equations are written
in quasi-coordinates. In such a case there are many difficulties, especially for
systems with large dimension [6, 7].

In present work the form of equations of motion is written by parameters
of the system, which are given in quasi-coordinates. It is important that the
equations obtained have been written in the matrix form. This is convienient for
the system of large dimension.

This work is completed with financial support of the Council for Natural
Science of Vietnam.
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MOT DANG PHUONG TRINH CHUYEN PONG CUA HE CO HOC
TRONG A TOA PO (TOA PO KHONG HOLONOM)

Truéc diy dbi véi cde hé co hoc phire tap, dic biét khi biéu thiérc dong ning
cda hé ho¥c cdc phwong trinh lién két dwoc viét trong & toa do dé viét phwong
trinh chuyén d6ng cda nhitng hé nhw vay phii ding hojc phwong trinh Lagrange
véi nhén t hodc phwong trinh Lagrange trong 4 toa d6.

Theo céc con dwong nhw vy sé gip phai nhigu khé khin, vi du, khi st dung
phuwong trinh Lagrange dang nhin t& thi phdi khi& cdc nhin td, con khi ding
phwong trinh Lagrange trong 4 toa dé phai tinh kh4 nhidu hé s phirc tap [6).

Trong bai bdo da dwa ra mét dang phwong trinh rit thich hop cho cic trudmg
hop di néu trén. S dung truc ti€p cic thong s8 ciia hé cho trong 4 toa do va
diéu quan trong 1& dang phwong trinh dwoc viét trong dang ma tran. Di€u ndy
rit thudn tién cho viéc lip tr dong cic phwong trinh chuyén déng, vi du trong
hwéng symbolic, d4c biét d6i véi cdc hé cé thir nguyén 1én.
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