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ABSTRACT. In the paper the combination of collocation and factorization methods
applied to numerical investigation of bubble-inside drop system dynamics is presented.
Initially assumed bubble and drop have ellipsoidal forms. The initial relative location of
the drop in the bubble is determined by equilibrium condition between drop weight and
lift-force due to pressure distribution in gas/vapor. Calculations are implemented for the
_case of spherical bubble, drop without and with vaporization (thermal effect) and for the
experimental case [6] with alumini drop in water in pressure waves.

1. ‘Intr‘o‘duction

The investigation of behavior of
the system of drop and vapor cover
(Fig. 1) is important for analysis of dif-
ferent possible kind of situation may be
met in chemical, energetic industries
and cryogen techniques. To describe
dynamics of this system the mathe-
matical model improving existed mod-
els taking into account thermal effect
and vaporization at bubble wall is pro-
posed in [3]. In this paper using combi-
nation of collocation and factorization
methods some calculation results are
presented.
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2. Mathematical formulation

The model with rotational symmetry consists of following equations:

* for outside liquid flow:
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where # is velocity vector; p and p are pressure and density, respectively; g is
gravitational acceleration; o is surface tension coefficient; R, is bubble radius; r is
radial coordinate; 0 is polar distance, and ¢ is time. The subscripts ¢, g (or v) and
oo refer to parameters of liquid, gas (vapor) and at infinity, respectively. -

’
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* for inside gas flow:
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* for definition of moving boundary:

dR oL ] 1 08 OR
== (3 * 798 09) (210)

R(8,0) = Ry(9). (2.11)

The system of egs. (2.1)-(2.11) is closed and can be used to describe behavior
of the system of drop and vapor cover. More details about the mathematical
description can be seen in [3].

3. Dimensionless parameters

By standard procedure the system of proposed equations can be transformed
into the dimensionless form. It could be shown that the solution of above system of
equations depends on the following dimensionless parameters which, respectively,
characterize: '

the geometrical properties of, e.g. rotational symmetry ellipsoid drop and
bubble:

Ran = Ran/Ro, Riwo = Rbo/Ro, Rbk = Ron/Rs,,
the thermophysical properties of the materials:

aoR _ o _ S
. n, Re,,=£9——o—-9, k, o= Pt _ Pd

Ky poRo’ Po - po
the heat and mass transfer process:

e =c¢,To/t, Ae=Xe/do, 6=6/Ro, E&=BeTy/AoRo,
Ty =Ts/To, Jo= AoTo/Rolaopo,

the gravity: g =9Ro/po

and the pressure distﬂrbances:

Poo = Poo/Po OF APy, = (Poo = po)/po.
Here Ry = Ry, po = Puos Ao = Ay, @3 = npo/po. Together 17 dimensionless

parameters characterize the considered problem!

\
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4. Initial installation: vapor density, pressure and velocity distribu-
tion.

The initial state of the system is determined by requiring force balance be-
tween the lift-force due to pressure distribution in vapor and drop weight. Initially
assumed drop and bubble have ellipsoidal forms.

a) The weight of drop:

4
My = gWRghRvad- (4.1)

b) The force acted on the drop due to vapor pressure distribution:
Let consider the ellipse determined by following equation:
2 y?
F(z,y) = a—2+b—2—1=0, (4.2)

where a = R4, and b = Ry,. The normal vector to ellipse is easily calculated:

P grz-zdF= 1 (f_ _y_) (4.3)
|grad F| z?  y? \a?’ b? )
PR
and the force acted on the drop is
o --.__"g Py z Yy
p=pyn = W(E’ﬁ) : (4-4)
v
Thus the vertical component of force vector can be calculated
py=p-i= —————y:" =, (4.5)
p2 /L L
P + bt
or in coordinates £ = rsinf and y = rcosé
o S p, cos
P =P = e - (46)
b2 sin“f cos* 4@
at + b4

The total force acted on the drop can be calculated by integration along drop
surface and has the following form '

2r n

o
Py ://pllrz sin 0dfd¢ = 21r/‘p"1"2 sin 6d6. (4.7)
o0 ' o
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This integral can be calculated, for example, by trapeze form, cf. Bronstein and
Semendjajew 1972 [2].

To determine the initial vapor _distﬁbution the system of egs. (2.5) - (2.9) are
used with the following conditions:

9y

5 = (4.8)

t=0 pv(oao) = Po, 6=0 pV(O’0)7=p0’ o=7r)
In reality the boundary condition at # = 0 can be satisfied by releasing small
vapour bubble due to difference between vapour and surrounding pressure. Dur-
ing the calculation of steady vapour pressure distribution the drop and bubble
positions and shapes are assumed to be fixed.

It should be noted that the vapourisation rate and consequently, the vapour
pressure distribution and, therefore, the supported force for drop from surrounding
vapour depends on the heat and mass transfer processes between hot drop, vapour
and coolant and, consequently, position of drop. The real initial position of drop
within the bubble is chosen to be satisfied the force balance condition between the
drop weight My and support force from surrounding vapour P, i.e.:

My =p. (49)

5. Numerical method

The obtained system of partial differential equations with appropriate initial
and boundary conditions at bubble surface, at infinity and along the symmetrical
line (2.1)-(2.11) can be solved by combination of the collocation method for defi-
nition of outside liquid flow and moving interface with finite difference method for
definition of the vapor density and pressure distribution.

The solution of equations (2.1) satisfied the boundary condition (2.3) and
without singularity in § = 0 can be presented in the following form, cf. Abramowitz
and Stegun 1970 [1]:

3(r,0,6) = 3 ax(t) %Pk(m ). (5.1)
k=0

"In order to apply the collocation method above infinite series is truncated after

N +1 terms:
N

5(r,0,t) =3 ak(t)rk%Pk(cos ), (5.2)
. k=0 .
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here {ak(t)}kN=o are the coefficients to be chosen to fit the another boundary
condition (2.2). Applying collocation on the points {0.-}?':0 an appropximate
solution with a finite number of expansion coefficients {ak(t)}kN is obtained.
From interpolation theory it is known that convergence of series (3. 3) for N — oo

can be guaranteed if { 0; } are the zeros of ultra spherical polynomials, e.g. the
Legendre polynomials, cf. Fox and Parker 1968 [4].

The coordinates of the interface r = R(f,t) are also expa.nded in series of
Legendre polynomials:

N
R(0,t) = Z t) Pi(cos 6). N - (5.3)

The numerical procedure to be used is following:

(i) The coefficients ax(t) (at the beginning t = 0) is determined by equations
(2.4) and (5.2), the coefficients bi(t) - by equation (2.11) and (5.3), and the deriva-
tives 8®,/dr, 39,/06, OR; /30 and 3% R;/802 can be calculated analytically using
(5.2) and (5.3). |

(ii) After each time-step At the new value of bubble radii R; will be de-
termined by equation (2.10). Except the first time-step, where the simple Euler
integration method has been used, to integrate equation (2.10) the Adams and

Bashforth-2 algorithm, cf. Stoer and Bulirsch 1978 [9], is used which takes into
account the value of previous gradient:

Ri(t + At) = Ri(t) + 0.5 [3‘”3}” - dR"(td: At)]. (5.4)

(iii) After each time-step At using R;(t + At) the new values of vapor density
pvi(t + At), vapor pressure p;(t + At) and velocity u;(t + At) in the gap restricted
by drop surface and surrounding liquid will be determined by egs. (2.5) - (2.9).
To solve numerically eq. (2.5) the factorization method (7] is used. It should be
noted that eq. (2.5) is non-linear and at each time-step the iteration procedure is
used to approach its coefficients.

(iv) The potential ®;(t + At) is calculated using the last equation in brackets
after (2.4) taking into account eq. (2.2). Similar to integration method of eq.
(2.10), except the first time-step, where the simple Euler integration method has.
been used, to integrate this equation the same Adams and Bashforth-2 algorithm -
is used. After this the procedure is repeated for each time-step consecutively.
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Finite difference scheme and iteration procedure: To solve numerically eq.
(2.5) with initial and boundary conditions (2.8), (2.9) the following finite difference
scheme is used: - : ’

1 [/R} — RS \nrt+Lk+ (Rf — R} \*] 2, .pa\ntlk+l .
L (BSR4  (BE)]- o eim 6o
where
\n ' 1
( )' kp, sin B; 0.5(8i+1 — Bi—1)
n+1,k+1 n+1,k+1
% {.C,H.l,k (Pm'+1 - Pm’) _ a:y...+1,k (Pm' - Pm'—l)

++0.6 ﬂi-}-l _ ﬁi 1—0.57 ﬂi _ ,Bi—l : ’
C = (R, — Ra)%p,sinB, B=7-0, (Bo=0, fn=27), i=1,2,...,N—1.

The equation (5.5) can be rewritten in the following form suitable for numer-
ical integration using the method of factorization:

ok Lk+1 Lk
—AipDt LR 4 Bipl TV — cplt Y = D, (5.6)
where

A; = AtKPHpiiLE,
Bo=1+ AtKF (1 + 1100

Ci = AtKPH gt bk,
= (R,‘? - RS)IL N 3At< : J-kRg )n+l;
(m-m)TTU\R-RY

1

t

Kyz+1 _ 3n .
T . 3 3 n+1 ’
kup, sin B; (Rb — Rd),‘

. +1,k
pr+lk _ 2[(Rb — Ra)’p, Smﬂ] ?+o.5 .

ST (Bixr — Bic1)(Bigr — Bi)
P:rl+1,k B 2[(Rb — R3)%p, sinﬂ] ?jol.’sk .
=05 7 (Biy1 — Bi1)(Bi — Bi—1)
,‘:1,2,...,N—1- .

And in according to used calculation method we have:

k41 k ' '
pod T = e T oy, | (5.7)
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where

A _ Di+Cini—y

B - Coviy 7‘ "~ Bi—Cuii1

Additionally in according to boundary conditions, we have, respectively:

Wk ’ 1 y
pEIEY 2 R (ot point i = ), -
priLkFL _ prkbLE+l (a4 point § = 0).
Thus from equations (5.7) and (5.8) we have:
_ NWN-1 o .
puN—1=———, f(at pointi= N —1),
1-9n-1 (5.9)

Y% =1, no=0, (at points:=0),

For initial installation in according to two last conditions of (4.8) instead of (5.9)

we have:

= t =0) =const, (at pointt=N
PuvN va( ) . ( P ), (5.10)
7% =1, no=0, (at pointi=0).

The considered above finite difference scheme is implicit. It is easily to show that
it is stable, i.e. the approach errors at least are not increased from step to step,
because the coefficients A;, B;, C; satisfy following conditions

Ai; B‘h Ci>0)
B,'=1+A.'+Ci>A,'+C{>0.

(5.11)

Using Taylor expansion (e.g. Wachspress 1966 [12]) or method of box integra-
tion (e.g. Runchal, Spalding and Wolfschtein 1969 [8]) it can be shown that for
nonuniform grids the presented above finite difference scheme has the first-order
accuracy, i.e. a precision of order O(At, Af), and for uniform grids - a precision of
order O(At, (A6)2). The nonuniform mesh cell structure taken into account spe-
cific characteristics of considered problem is also used by Thoman and Szewczyk
1969 [10]. |

Let us consider the following example nonlinear differential equation:
ap 3 / dp
- — — 1 =0.- 5.12
5 +18)55(s0:A) 55) (5.12)

Let consider the Tayldr expansion at point 1:
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n dp
pfl — 4 At(at) +0((Aat)?), (5.13)
Pi+1 = pito.s + 0.5(Bi+1 — ﬂ‘)(aﬂ) +o.;

f 0.5(0.5(8i+1 — ﬂ,-))2 <_aaﬁ5).-+o.5 +0((AB)3);

Pi = Pi40.5 — 0.5(,6i+1 :B‘l) <8ﬂ)‘+0 5

+0.5(0.5(8ix1 — Bi))’ (gp?),-+0.5 +0((AB)3);

gi+0.5 (gg>s‘+o.5 = gi(‘gg)i +0.5(Bi+1 — Bi) 5z ap) +0((AB)*),

aﬁ ( 988
9i-0.5 (g—g)i—o.S =9 (g_;)g B Os(ﬁ' - ﬂi—l)gﬂ— (gg-ﬁ)i + 0((Aﬂ)2)

Therefore we have:

n+1 n
(%), = 2 v oan),
__aﬁ pi+1 Pi 2 )
(aﬂ)i+o s Biy1— B +0((A8)%), | (5.14)

dp Pi— pPi-1
(38)i-05 = 5 *+0((88)"),

1) 555)), o

;.
aﬂ( a,g) "~ 05(Bit1— Bio1)

+0(AB).

Using the uniform mesh cell structure the finite difference scheme precision can be
improved to space second-order accuracy. '

For iteration all parameters at k = 0 take initial value from previous time
step, i.e. p:;H’O J pzjl 0 = = p}; and so on. It should be noted that the
value of bubble radius R"+1 should not be iterated, because in every timestep it
already determined before calculating vapour characteristics. The iteration will
be interrupted in according to following criteria:

n+1,k+1 n+1l,k
pm Py

n+l,k+1
vi

<e¢, €=10"7, ¢=0,1,2,...,N. (5.15)
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6. Calculation results

In Figs.2-4 the calculation results are presented for cases of spherical steam
bubble with radius Rpo = 5mm and alumina drop with radius Rg = 2.5mm in
water without (j = 0) (Fig.2, 3) and with heat-mass transfer (5 # 0) (Fig.4). In
these cases the centers of bubbles and drops, proposed, coincide. In accordance
to Grigul, 1989 [5] and Vargaftik, 1975 [11] the thermo- and physical properties
of fluid and vapor are following: Ty = 373 K; Ty = 1570K; T, = 970K; ¢, = 2270
J/kgK; A, = 0.1 W/mK; n = 1.26; pyo = 0.22kg/m3; u, = 4 x 1075 Ns/m?; 0 =
5.3 X 10~ 2kg/s; | = 2100kJ /kg; g = 9.8 m/s?; p, = 998kg/m?; pg = 3500kg/m?;
e =3.5; B=5.67 x 10~® W/m2K*.

J|—t=1516ms
* -—t =1.254 ms
—t=1127 ms
- ~-1 = 0.00
e < —- Drop surface

Fig. 2

In Fig.3 the numerical results at ¢ — +0o0 are compared with limited val-
ues, which in this case can be obtained by analytical methods. There are good
agreements between the numerical and analytical solutions. In the case with mass
transfer the vapor density approachs the limited value, and the radius increases
(Fig. 4).

In Fig.5 the scheme of experiment is presented. The pressure pulses are
created by magnetic hammer (Peppler, Till and Kaiser 1991 [6]). In Figs.6-8

presented the numerical and experimental results for following case: R, = 3.7 mm;
Ry, = 3.6mm; Ry, = Rgp, = 2.7Tmm; Ty = 373K; Ty = 2569K; T, = 1430K;
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cy = 26221 /kgK; A, = 0.195 W/mK; n = 1.22; pyo = 0.150kg/m3; p, = 2.1 x
10~% Ns/m?; o = 5.3 x 10~2kg/s; | = 2100kJ /kg; g = 9.8 m/s?; pe = 998 kg/m3;
pa = 3500kg/m3; € = 3.5; B = 5.67 x 1078 W/m?K*.
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From Fig. 6 it can be seen that the calculation results described quantitatively
good two phases of considered process: the first compress phase and the second
expansion phase. In Fig. 7 pressure distribution in some moments are presented. In
Fig. 8 comparison of calculation results (bubble diameter equator) and experiment
s presented. It should be noted that at the beginning part of the second phase,
ie. at the time between 0.2 and 0.5 ms, in experiment the expansion is occurred
mainly at the top part of drop, meanwhile in calculation this process is occurred
m all directions. In compress phase the bubble surface stays smooth. In expansion
phase wave is observed in both experiment and calculation. The vapor velocity -
and vapor parameters (pressure and density) quickly have a uniform dlstnbutlon
At moment ¢t = 0.53 ms vapor mostly does not move along the gap.
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7. Conclusion

For bubble - inside drop system within the framework of mathematical model
taking into account the thermal conditions, heat and mass transfer between phas-
es, the collapse process caused by pressure increasing in surrounding fluid in film
boiling condition is investigated. The problem is multi-parametric. In total, 17 di-
mensionless parameters and combinations characterize solution set. The obtained
results show the important role of geometrical, thermal conditions, thermo-physic
properties of phases and heat-mass transfer process. The calculation results are
quantitatively good agreed with experimental observation.
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Nomenclature

ao sound velocity in gas [m/s?|,

ax expansion coefficient, function of k and ¢,

br expansion coefficient, function of k£ and ¢,

B coefficient Stefan-Boltzmann [W/m?K*|,

¢ specific heat capacity at constant pressure [j/kgK],

D = X/pc, thermal diffusivity [m?/s],

¢ gravitational acceleration [m/s?],

j rate of phase transition per unit interfacial surface [kg/m?Zs],
k coefficient in formula (7),

21



| latent of evapourisation [j/kg],

n polytropic coefficient,

N maximum number of collocation angles,

p pressure [Pa].

Py k-th Legendre polynomial,

g heat flux [j/m?s],

r radial co-ordinate in spherical co-ordinates [m],

R drop and bubble radius in spherical co-ordinates [m],
¢t time [s],

- T absolute temperature [K],

u velocity [m/s],

z bubble surface coordinate or horizontal coordinate [m]|,
y vertial coordinate m)].

Greek symbols
ﬂ =7 - 0,
6 thermal boundary-layer thickness in liquid [m],
At timestep,
A0 angle-step,

€ emission coefficient or precision,

0 azimuthal angle in spherical co-ordinates,

A thermal conductivity [W/mK],

p vapour dynamic viscosity [Ns/m?],

p .density [kg/m3],

o surface tension coefficient [N/m]|,

® velocity potential in vortex-free flow [m?/s].
Subscripts

b bubble,

¢ convective,

d drop,

eq equivalent,

g gas,

h horizotal,

¢ number of a collocation point,

l liquid,

O characterized value or parameter of initial state,
r radiation or radial direction,

s saturated,

v vapour (for p, p and u) or vertical for R),
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'G"

0 tangential direction,
oo at infinity.

Superscripts

k iteration number,
n number of timestep.
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UNG DUNG KET HOP PHUONG PHAP DINH VI
VA PHUONG PHAP NHAN TU HOA
DE GIAI BAI TOAN PONG LUC HE BOT-HAT & TRONG

Bai bdo trinh bay viéc st dung két hop phwong phép dinh vi va phwong phip
nhén t& héa dé gidi bai todn dong lwc hé bot-hat & trong. O trang thai ban diu
bot va hat gid thiét c6 dang elippsoid. Vi tri twong d6i ban dau cda hat trong
bot dwoc xdc dinh tir dieu kién cin bing gifra trong lwgng cla hat va luc nang
do phan bd 4p sudt trong khi / hoi. Tinh todn dwoc thuc hién cho trudng hop
bot, hat ciu khi khéng c6 va khi c¢6 bay hoi (hiéu tng nhiét) va cho truwdng hop
thi nghiém [6] hat nhém 14ng trong nuéc khi c6 séng 4p suat.
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