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MIXED REGIME IN A QUASI-LINEAR SYSTEM 

NGUYEN VAN DINH - TRAN KIM CHI 

Institute of Mechani'cs, NCST of Vietnam 

ABSTRACT. A quasi-linear system with cubic nonlinearity under two external excita
tions in subharmonic responces of order 1/2 and 1/3 was examined. In the system under 
consideration there appears mixed oscillation due to the interaction between derived ex
citations. Various forms of the resonance curve were identified. The stability study was 
based on an abbreviated form of the second stability condition [2]. 

1. Introduction 

The present article deals with the effect of two external excitations in subhar

monic resonances on an oscillator which has weak (order c-) cubic non-linearity. 
The attention is focused on mixed regimes due to supplementary excitations of 
c--order, which are introduced by the "original" excitations through the cubic non
linearity. 

The asymptotic method [1] and some remarks given in [2] are used. The 
so-called associated equations are established; the analytical identification of the 
resonance curves is done; the classification of the resonance curves is based on the 
location of the critical part; stable branches of the resonance curve are determined 
by an abbreviate form of the second stability condition. 

2. System under consideration - Original and Associated equations 

Consider a quasi~linear ·system governed by the differential equation: 

x + x = c-(-hx -1x3
) - 3bw 2 cos 2wt - 8cw2 cos(3wt +a), (2.1) 

where x is an oscillatory variable, over dots denote derivatives relative to time t, 
c- > 0 is a positive small parameter, h ~ 0, b > 0, c > 0, w ~ 1, 0 ~ a < 27r and/, 
for simplicity, is assumed to be positive. 

In the first approximation [1], the oscillations are of the form: 

x = a cos (wt + 8) + b cos 2wt + c cos ( 3wt + a), (2.2) 
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. c f, a= -- o, 
2w 

• E: 

aO = - 2w go, 

Jo= hwa - esin(O +a) - pa2 sin(30 - a), 

go= 8a - ecos(O + a) - pa2 cos(30 - a) , 

where a, () are slowly varying variables (amplitude and dephase angle): 

. 2 31 ( 2 2 31 2 6 = w - 1 - - b + c ) - -a 
2 4 ' 

(2.3) 

Constant amplitude and dephase of stationary oscillations are determined by 
the original equations: 

Jo= 0, go= 0. (2.4) 

Higher harmonics (sin 30, cos 30) in (2.4) can be eliminated by the combina
tions: 

where 

r 11 = u sin 0 - v cos 0 + pa cos 20, 

r21 = v sin 0 + u cos 0 + pa sin 20, 

u = hwcosa - 6sina, 

r 12 = v sin 0 + u cos 0 - pa sin 20, 

r22 = -u sin 0 + v cos 0 +pa cos 20, 

v = 8 cos a+ hw sin a, 

and the associated equations are obtained: 

(2.5) 

f =A sin 0 + B cos 0 - E = 0, g =: G sin 0 + H cos 0 - K = 0, (2.6) 

where 

A= a(pe -T) cos a, B = -a(pe -T) sin a, E = e(hwcos2a - 8sin2a), 

G = -a(pe + T) sin a, H = -a(pe + T) cos a, K = e(hw sin 2a + 8 cos 2a), 

T 2 2 h2 2 £2 = T11 T22 - T12T21 = p a - W - u . 

If T = 0, the two systems (2.4) and (2.6) are not equivalent. Consequently, the 

original resonance curve C0 (determined from (2.4)) is obtained from the associated 
resonance curve C (determined from {2.6)) by rejecting strange representative 

points; the latter located in the non-equivalence curve T = 0, corresponds to 

strange solutions. 
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3. A frequency - amplitude relationship ~nd two resonance curves 

From (2.6), by eleminating the p}i.ase fJ the following frequence - amplitude 
relationship can easily be established 

(3.1) 

or 
W(w 2

, a
2

) = TWo(w 2
, a

2
) = O, (3.2) 

where D = I ~ ~ I = a
2
(T

2 
- p

2
e

2
), D 1 = I ~ ~ ,, D2 = I ~ ~I· 

From (3.1) the associated resonance curve C can be identified and it consists 
of two parts: 

- the regular part C' located in the regular region: 

D #- 0, (3.3) 

- the irregular critical part C" located in the irregular region: 

D=O, (3.4) 

satisfies 

D1 = 0, D2 = O, (compatibility conditions) (3.5) 

A2 + B 2 ;2: E 2
, G2 + H 2 ;2: K 2

, (trigonometric conditions). (3.6) 

From (3.2) , with regard to D \r=O = -a2p2 e2 < 0, we conclude that the non 
equivalence curve T = 0 is a regular branch . It has been demonstrated in [2], the 
original resonance curve C0 (heavy curve) is obtained from C by rejecting T = 0 
and can be identified from the simplified frequency - amplitude relationship 

(3.7) 

Note that, on the plane(~ = w2 -1, a 2 ), the irregular region D = 0 is formed 
by two parabolas: 

P 1 : pe - T = 0, and P 2 : pe + T = 0, (3.8) 

and they · are respectively situated above and below the non equivalence curve 
T = 0 (broken curve). 
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4. Diverse forms of the resonance curves 

The resonance curves are quite complicated and depend on the location of the 

critical part C". Below, for fixed values / = 0.04, b = 0.4, c = 0.2 typical forms of 
the resonance curves will be plotted with different values h, (J. 

For the system without damping (h = 0) , the condition (3.4), (3.5) admit on 
n n n 

the curve P1 : u = k-, (k = 0, 1, 2, 3) and 8 = 0, and on the curve P2 : u = -+k-, 
2 4 2 

with the restriction a2 ~ ~·a: = ~b2 . 
. n 

Thus: - If u = k- , (k = 0,1,2,3), the critical part C" coincides with the 
2 

irregular parabola P 1 (Figure 1 for u = 0). 
n n 

- If u = - + k- , (k = 0, 1,2,3) , the critical part C" consists of two upper 
4 2 

1 
portions (those bound below by a 2 ~ 3a:) of the irregular parabola P2 and a 

single critical point I (Figure 4 corresponds to u = n / 4). 

- For other values of (J, only the point I is critical (Figures 2, 3 respectively 
correspond to (J = n / 12 and u = n / 6) . 

0.40 -

0 .02 

' : 
~ •'. 

Fig.1. h = 0, a = 0, 

/ = 0.04, b = 0.4, C = 0.2 

a2 
I 
! 

0.40 -' 

Pi - --

: 0 .02 

;', .. ·· 
n 

Fig. 2. h = 0 , u = -, 
12 

/ = 0.04, b = 0.4, C ='= 0 .2 

For the system with damping (h > 0), the critical part C" (if it exists) is 
reduced to a single point. Let us examine in detail the case u = 0. The resonance 
curves shown in Figures 5, 6, 7, 8, 9 correspond to h = 0.001 , 0.002753 , 0.0033, 
0.00357 , 0.00362 . In the case h = 0.001 the resonance curve Co only consists of 
the regular part C' (Figure 5). Successively a single returning critical point I on 
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P2 (Figure 6), and a loop appear (Figure 7). At h ~ 0.00357, the loop connects 
with the left and right regular branches (Figure 8) . The last form of the resonance 
curve is given in Figure 9. 

The resonance curve in Figure 10 is plotted with u = 7r /4, h = 0.0033; the 
only critical point I moves up. Fig:ures 11, 12 show the resonance curves in the 
case u = 7r /6. They ·are plotted with h = 0.001, 0.002 respectively: the critical 
point I moves along the irregular parabola P 1 . 

7r 
Fig. 3. h = 0, u = 6, 

1 = 0.04, b = 0.4, c = 0.2 

. . . ' . . .. 
Fig. 5. h = 0.001 , a= o, 

I = 0.04, b = 0.4, C = 0.2 
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.. 
: .... · 

7r 
Fig. J,. h = 0 , a= 4' 

I = 0.04, b = 0.4 , C = 0.2 

0.01 

Fig. 6: h = 0.002753, a = 0, 

I = 0.04 , b = 0.4, C = 0.2 



For ordinary stationary oscillations (D =/:- 0, h > 0) with representative points 
in the equivalence domain (T =/:- 0), the stability condition is: 

1 aw 
TD 8a2 > O. 

For example, in Figure 7 the branches containing heavy points correspond to 
stable oscillations. 

0.01 0.03 

0.80 

Fig. 7. h = 0.0033, a = 0, 

/ = 0.04, b = 0.4, C = 0.2 

0.01 0.03 

Fig. 9. h = 0.00362, a = 0, 

/ = 0.04, b = 0.4, C = 0.2 
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0.01 0.03 

a2 

0.80 

Fig. 8. h = 0.00357, a = 0, 

/ = 0.04, b = 0.4, C = 0 .2 

0. Oo-+-=--,.......:::::::---.....---f),. 

0.00 0.03 

7r 
Fig. 10. h = 0;0033, a = 4, 
/ = 0.04, b = 0.4, C ~, 0 .2 



0.60 

o . oo+-===-+-.,,.:_-~==-
o.oo .. ·' ;.·· 0 .02 

Fig.11. h = 0.001 , a= ~ ' 

/ = 0 .04 , b = 0 .4, C = 0.2 

5. Con cl us ion 

a2 

0.60 

o.oo+======r!--:....:..:___:::;::==--
o. oo 0.02 

71" 
F£g. 12. h = 0.002, a = 6', 
/ = 0.04, b = 0.4, C = 0.2 

Mixed oscillations in a quasi-linear system were examined. Higher harmonics 
of the dephase in the equations of stat ionary oscillations were eliminated. The 
resonance curve was identified analytically. An extended abbreviated form of the 
second condition of st ability facilitated the stability study. Diverse complicated 
resonance curve were obtained. 
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DAO DQNG HON HQP & MQT H~ A TUYEN 

Xet chan ttl- phi tuyen yeu b~c ba ch!u hai ngo~i kkh d(mg c{mg hu&ng thfr 
dieu hoa cap 1/ 2 va 1/ 3. Trong h~ xuat hi~n thanh phan dao d9ng h6n h<;YP thong 
so - CU'CYng bfrc do tU'O'ng t ac gili'a cac kich d<?ng tU'O'Ilg il'ng thfr cap gay ra. Cac 
dU'Cmg c9ng hmrng da dU'qc xac d!nh va tfnh 5n d!nh da dU'crc nh~n biet d~ dang 
nha d~ng g<?n m& rc}ng cua dieu ki~n 5n d!nh th{r hai . 
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