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SPECTRAL ANALYSIS OF VIBRATION 
IN WEAKLY NON-LINEAR SYSTEMS 

NGUYEN TIEN KHIEM 

Institute of Mechanics, NCST of Vietnam 

The weakly nonlinear systems subjected to deter:m:inistic excitations have been 
fully and deeply studied by use of the well developed asymptotic methods [1-
4]. The systems excited by a random load have been investigated mostly using 
the Fokker-Plank-Kolmogorov equation technique combined with the asymptot­
ic methods [5-8]. However, the last approach in most successful cases allows to 
obtain only a stationary single point probability density function, that contains 
no information about the correlation nor' consequently, the spectral structure of 
the response. The linearisation technique [9, 10] in general permits the spectral 
density of the response to be determined, but the spectral function obtained by 
this method because of the linearisation eliminates the effect of the nonlinearity. 
Thus, spectral structure of response of weakly nonlinear systems to random exci­
tation, to the author's knowledge, has not been studied enough. This paper deals 
with the above mentioned problem. The main idea of this work is the use of an 
analytical simulation of random excitation given by its spectral density function 
and afterward application of the well known procedure of the asymptotic method 
to obtain an asymptotic expression of the response spectral density functi.on. The 
obtained spectral relationship covers the linear system case and especially empha­
sizes the nonlinear effect on the spectral density of response. The theory will be 
illustrated by an example and at the end of this paper there will be a discussion 
about the obtained results. 

1. Simulation of stationary random process with given spectral den­
sity 

Let's consider a stationary random process X( t) with zero m~?-n value and 
the spectral density function Sx(w). This means that 

+oo oo 

(X{t)) = 0; (X(t)X(t + r)) = Rx(r) = J Sx(w)e-iwr dw c-c . 2 / Sx(w) cos wrdw! 

-oo 0 
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+oo +oo 

a~ = Rx(O) = f Sx(w)dw = 2 f Sx(w)dw. 
-oo -oo 0 

(1.1) 
The symbol (.) denotes the probability mean value operator and Rx(r) is the 
correlation function of the process X(t). 

Theorem. The given random process may be represented in the form 

X(t) - Xo(t) = axhcos(Ot + <p), (1.2) 

where 0 is a random variable of the probability density: Pn(w) = 2Sx(w)/a;; 
w E (O,~) and <pis a random variable, uniformly distributed in [0,27r]. 

Proof. In fact 

(Xo(t)) = ax(J2cos0tcos<p - J2sin0tsin<p) 

= axh(cosOt)(cos<p) - axh(sinOt)(sin<p) = 0 

because 
2rr 2rr 

(cos <p) = (sin <p) = _..!:_ J cos <pd<p = _..!:_ J sin <pd<p = 0. 
271" 271" 

. 0 0 

Furthermore 

oo 2rr 

(Xo(t)Xo(t + r)) = 4 f Sx(w)dw_.!_ f cos(wt + <p) cos(wt + <p + wr)d<p 
271" . 

0 0 

oo 2rr 

= 2 J Bx(~)dw_.!_ J [ cos(2wt + wr + 2<p) + coswr]d<p 
271" . 

0 0 
00 

= 2 f Sx(w) coswrdw = Rx(r). 
0 

So that Xo(t) is a stationary random process with the correlation function Rx(r) 
and consequently the spectral density Sx(w). The theorem has been proved. 

Since 
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the process X(t) can be expressed in the complex form: 

{1.3) 

where Po = ux.J2ei'P /2, Qo = P; = uxV2e-irp /2. Thus, the given random process 
X(t) with zero mean value and spectral density function Sx(w) can be represented 
in the form {1.3). 

2. Asymptotic solution 

Now one shall consider stationary solution of the equation 

ii(t) +2hy(t) + w5y(t) + cf(y, y) = X(t), (2.1) 

here, h, wo, care constant parameters, c is a small one, f is a non-linear function of 
y, y, X(t) - a stationary random process with zero mean value and spectral density 
function Bx(w). The problem is to find the spectral density function of a st<!-tionary 
solution y(t) of the equation (2.1). However, in this section an asymptotic solution 
of the equation (2 .1) is constructed formally using the small parameter method. 

Using expression (1.3) of the given process X(t), the equation (2.1) can be 
rewritten in the form 

fi(t) + 2hy(t) + w5y(t) + cf(y, y) = Poeiwt + Qoe-iwt, (2.2) 

where Po = ux.J2ei'P /2 , Q0 = ux.J2e-i'P /2, 11, cp are random processes defined in 
the previous section . . Solution of the equation (2.2) is to be found now in the form 

(2.3) 

Therefore, from (2.2) and (2.3) one get the equations for seeking the Yo, Y1, Y2, ... 

.. (t) 2h · (t) 2 (t) n iOt +·· Q. -int Yo + Yo + w0 yo = roe oe ; 

iii (t) + ~h!i1 (t) + w5yi(t) = - !(Yo, Yo); 

ih(t) + 2hy2(t) + W~Y2(t) = _aaf (yo,!io)Y1 - aa~ (yo,!io)YI · . y y 

Solution of the equation (2.4) can be found in the form 
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(2.5) 

(2.6) 

(2.7) 



where: Ao = H(iO)Po, Bo = H(-iO)Qo, H(iO) = [w5 - 0 2 + 2hi0] - 1 • This 
solution has another expression 

Yo(t) = o:(O)ei<f> + o:* (O)e-i<f> (2.8) 

with the following notations 

o:{O) = <JxhH(i0)/2, <I>= Ot + cp, o:*(O) = <lxhH(-i0)/2. · 

From (2.8) we will have 

Yo(t) = f3(0)ei<f> + {3* (O)e-i<f>, {3(0) = iOo:(O). (2.9) 

Substituting (2.8) and (2.9) into the function f (y, y) and, then, expanding it into 
the Fourier seri~s .yields · 

with 

n n 

27r 

fn(O) = __!__ f f[yo,Yo]e- in<f>d<f>. 
211" 

0 

(2.10) 

(2.11) 

The equation {2.5) together with expression (2.10) of the function f (y, y), can be 

solved and its solution is of the form 

Y1(t) = LAn(O)ein<f>, An(O) = -H(inO)fn(O). (2.12) 
n 

In this case, we will get 

Y1(t) = L An(O)ein<f>, Ari(O) = -inOH(inO)fn(O). (2 .13) 
n 

Substituting (2.8)-(2.9), (2.12)-(2.13) into the function 

( .. ) af( .) · af( . ). 
gyo,Yo,Y1.Y1 =-a Yo,YoY1+-a. Y.YoYI y . y 

makes the last a periodical function of ¢ , which can consequently be expanded 

into the series 
. . 

g(yo,Yo,Yidii) = L9n(O)ein<P , <P = Ot + cp , (2.14) 
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where 
211" 

9n(O) = 2~ f 9[Yodio,Y1dii]e-incf>d</>. (2.15) . . 
0 

Substituting (2.14) for the function g into the equation (2.6), one can get its 
solution as 

n 

Thus, one has obtained formal expressions for Yo(t), Y1(t), Y2(t). 

3. Response spectral density function 

Having the expressions of y0 (t), yi(t), ·y2(t), ... in the form of (2.8), (2.12), 
(2.16), one can go to the calculation of the co.rrelation function 

Ry(t, t +r) = (y(t)y* (t + r)) 

= (Yo(t)y~(t+ r)) + e-(yo(t)y;(t + r) + Yo(t + r)y;(t)) 

+ e-2(Yo(t)y;(t + r) + Yo(t + r)y;(t) + Y1(t)y;(t + r)) + e-3 
•.. 

= Ro(t, t + r) + e-R1(t,t + r) + e-2R2(t,t + r) + e-3 
. . . 

At first, from (2.8) we have 

Ro(t, t + r) = (Yo(t)y~(t + r)) 
= ((o:ei</> + o:*e-i<f>)(o:* e-i<l>e-int + o:ei<f>eiOt)) 

= (o:o:*(e-int + eint)) + (a2e2ic/>ei0t + a*2e-2itf>e-int) 

= 2(aa* cos Or) + 0 
00 

= Ux J Pn(w) jH(iw)j 2 coswrdw 
0 

00 

= 2 J IH(iw)l 2 Sx(w)coswrdr 
0 

= Ro(r). 

Furthermore, using (2.8) and (2.12), function Ri(t, t + r) takes the form 
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Ri(t,t + r) = (Yo(t)yi(t + r) + y0(t + r)yi(t)) 

= ((o:ei4> + o:*e-i4>) L A~e-in(tt>+nr)) 
n 

n 

= (o:A~e-int + o:* A~1eim) + (o:* Aie-int + o:A1eiwt) 

= 2((o:A~ + o:* Ai) cos Or) 
00 

= -(4v'2/uz) J Bx(w)jH(iw)l 2Ref1(w) coswrdw 
0 

=R1(r). 

Finally, the function 

R2(t,t + r) = (Yo(t)y;(t + r) + Yo(t + r)y;(t) + yi(y)yi(t + r)) 

(3.2) 

can be determined as follows. First note that the series (2.12) is different to series 
(2.16) by the coefficients An and Bn, and therefore, by the functions f n, 9n· So 
that the function 

R20(t, t + r) = (Yo(t)y; (t + r) + Yo(t + r)y; (t)) 

could be obtained from the Ri(r) defined in (3.2) by putting the g1 (w) instead of 
the Ji (w ). As a result 

00 

R~o(t, t .+ r) = -(4v'2/uz) J Bx(w)l!f,(iw)l 2Reg1(w) coswrdw = R20(r). (3.3) 
0 ~ 

To finish determining R2 , it remains to calculate the correlation function of the 
process Y1(t): 

R21(t,t + r) = (yi(t)yi(t + r)) 
= L (An(O)Am(O)ei(n-m)t/>-imrlr) 

n,m 

n 

n 
00 00 . 

· = 4 L f IH(inw) l2 lfn(w)l 2 Sx(w) cos nwrdw 
n=lo 

= R21(r). 
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Thus, the correlation function Ry of the solution (2.3) gets the final form 

where the functions Ro(r), Ri(r), R2o(r), R2 1 (r) have just been determined above. 
The obtained expression of the correlation funct ion shows that the asymptotic 
solution (2.3) constructed above is really a stationary random process. So that 
its spectral density can be found after performing the Fourier transform of the 
correlation function (3.4) : 

where 

So(w) = J{Ro(r)} = IH(iw)l 2Sx(w); H(iw) = [w5-w 2 +ihw] - 1, 

S1(w) = J{R1(r)} = -
2
J2JH(iw)J 2Refi(w)Sx(w), 
ax 

S2o(w) = J{R2o(r)} = -
2
J2 1H(i(w)J 2Regi(w)S:c (w), 

U:c . 
. 00 

S21 (w) = J { R21 (r)} = 2IH(iw) 12 L .!_If n(w /n) IBx(w /n). 
-- n 

n=l 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The effect of nonlinearity would be more obvious in formuia (3.5) rewritten in the 
form 

Sy(w) = JH(iw)J 2{1 + µ(w)}Sx(w), (3 .10) 

where coefficient µ(w) describing the non-linear effect is 

2y12 [ 2 ( )] 2 ~ 1 I· ( / )l 2S:c(w / n) 3 . µ(w) = --;- - cRefi(w) +c Reg1 w +2c L..t - fn w n S ( ) + c ... 
ax n=l n x w 

(3.11) 
In formula (3.11) one can see also the contribution of the so-called subharmonic 
oscillation to the response spectral structure of the system. Furthermore, since the 
spectral density of a stationary random process is always positive, the parameters 
c, h, ax, w0 must satisfy the condition 

D(w) = 1+µ(w)2:0, Vw. (3 .12) 

It is also the condition for the existence of the stable stationary solution of the 
given system (2.1). 
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4. Results and discussion 

To illustrate the theory, in this section the system 

ii(t) + 2hy(t) + y(t) + cy3 (t) = X(t) (3 .13) 

is considered under the assumption that the excitation X(t) is a finite white noise 
process, which has the spectral density 

( ) 
_ { 0.25 for 

Bx w -
0 

w E (-2,+2) 

elsewhere. 

For such a process CJ x = 1. 

In this case one has 

fi(w) = 
3

J21H(iw)l 2 H(iw); 
4 

h(w) = J2 H 3 (iw); 
4 

H(iw) = (1 - w2 + 2ihw)- 1
. 

gi(w) = - 3
J21H(iw)l 4 H(iw){6H(iw) + 3H(-iw) + H(3iw)} . 
8 

Therefore, 

c2 27c2 

µ(w) = -3clH(iw)l 2 Re{H(iw)} + 
12

1H(iw/3)l6 + -
4
-IH(iw)l 6 

(3.14) 

+ 
3
;

2 

IH(iw)l 4 Re{H(iw)[6H(iw) + H(3iw)J}, (3.15) 

and 

Sy(w)=l1H(iw)j 2 {1 + µ(w)}, H(iw)=[l - w2 +2ihwi- 1
, wE[0,2] (3 .16) 

Graphics of the functions Sy(w), w E [O, 2] for various values of the parameters h, 
c are plotted and shown in figures 1-3. Comparing the figures 1, 2 one can see 
clearly the effect of the nonlinearity on the response spectrum. It's namely, that 
the one peak spectral curve, typical for linear systems, now becomes a two peak 
curve in the presence of nonlinearity. The new peaks in the spectral curve are 
more obvious and sharp, as the magnitude of the nonlinearity increases and the 
damping is reduced. 
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Graphics of the functions D(w) = 1 + µ(w), w E [O, 2] in two cases: h = 0.2, 
e = 0.028 - 0.038 and h = 0.3, e = 0.08 - 0.12 are plotted in figures 4, 5. These 
figures show an interesting fact that for the given damping ratio h there exist 
exciting frequencies, at which the amplitude of excited oscillation is not affected 
by the nonlinearity. The condition for the existence of stable stationary oscillation 
(3.12) in this case may be determined only numerically and in the plane of (h, c:) 
the condition defines the unshaded zone in figure 6. 
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Conclusion 

Based on the obtained results, t he following conclusions can be given: 

1. Weakly nonlinear systems subjected to a stationary random excitat ion have 
been considered. 

2. Using a harmonic simulation of a stationary random process with the given 
spectral density and the procedure of the well known small parameter method, 
an asymptotic expression for spectral density of response of t he systems 1s 
established. 

3. The response spectral density function obtained without any assumption 
about the smallness of t he damping and excitation clearly contains the non­
linear effect , t hat is illustrated in presented example by the presence of two 
peaks in the spect ral density function of response. 

4. ·The obtained formula for response spectral density function has also shown 
the effect of subharmonic oscillation. 

5. From the obtained formula, a condition for the existence of stationary solution 
of the systems can be obtained. 

6. The approach proposed herein may be further developed to investigate other 
cases of weakly nonlinear systems. 

- This work has been completed with financial support from The National 
Council for Natural Sciences of Vietnam. 
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PHAN TICH PHO DAO DQNG TRONG HJ)} PHI TUYEN YEU 

Tren c.a s& mo phong dieu hoa tac d(>ng ng[u nhien dirng va khai tri~n nghi~m 
theo chu6i ti~m c~n CUa tham SO be da xay d\l'Ilg dU'Q'C Cong thtrc ti~m C~n CUa 
ham m~t d(> ph5 cho nghi~m h~ phi tuyen yeu. a day h,rc c<ln va kfch d(>ng ngoai 
khong can phru giA thiet nho cling b~c v&i thanh phan phi tuyen. Cong thrrc nay 
cho phep nghien crru Anh hrr&ng ro r~t cua yeu to phi tuyen va dao d(>ng thfr dieu 
hoa den d~c trrmg phB cua dao d(>ng. Trong vi dv da xet h~ Duffing drr&i tac 
d<)ng clia on tr~ng deli h~p. Ket qua cho thay thanh phan phi tuyen da lam cho 
ham ph6 m<}t dlnh d~c trrmg ctla h~ tuyen tinh tr& thanh ham c6 hai dinh ro r~t. 
Phmmg phap nay c6 th~ phat tri~n tiep dg nghien crru cac h~ tv- dao d(>ng ho~c 
cac h~ kfch d<)ng tham so. 

192 . 


