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ABSTRACT. The paper presents the analysis of three non-linear systems under random 
excitation by using Local Mean Square Error Criterion which is an extension of Gaussian 
Equivalent Linearization proposed by Caughey. The obtained results shows that the new 
technique allows to get much more accurate solutions than .that using Caughey Criterion. 
The paper leads out some new conclusions which have not been found yet by the previous 
researches. The new conclusions more clarify the significance of this technique. 

1. Introduction 

One of the known approximate techniques is Gaussian equivalent lineariza-.. . . 

tion (GEL) which was first proposed by Caughey [1] and has been developed by 
many authors (see , e.g. [4, 6-9]) . It has been shown that the Caughey method is 
presently the simplest tool widely used for analysis of non-linear stochastic prob­
lems. However, a major limitation of this method is' perhaps that its accurctcy 
decreases as the non-linearity increases, and it can lead to unacceptable errors in 
the second moments [3, 5, 10, 11]. Further, if one needs more accurate approx­
imate solution, there is no way to obtain them using the conventional version of 
Gaussian equivalent linearization. 

N. D . Anh and M. Dipaola proposed "Local Mean Square Error Criterion" 
(LOMSEC) which is an extension of GEL. The proposed technique is t hen just 
applied to Duffing and Van der Pol oscillators under a zero mean Gaussian white 
noise to show significant improvement over the accuracy of the classical GEL [8]. 
The publications of Anh and Dipaola [8] as well as of the previous others however 
have not considered other diverse systems by using the proposed technique, their 
comments and conclusions are therefore limited. 

L. X. Hung carried out a further investigation [10, 11], which analyzes a 
series of non-linear systems under zero mean Gaussian random excitation by using 
the proposed technique. The obtained results make LOMSEC's significance more 
clarified, add more comprehensive and reliable remarks. 

To enrich the investigation of the new technique. The paper presents the 
analysis of three more non-linear systems by using the proposed technique, and 

. joins with the publications [10, 11] to lead out some new comments and conclusions 
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more plentiful and more improved. 

2. Local Mean Square Error Criterion (LOMSEC) 

'Consider the generalized non-linear stochastic system: 

e(z, z) = z + 2hz + w6z + c-g(z, z) - f(t) = 0 . (2 .1) 

The symbols in (2.1) have their customary meanings; g is a non-linear function that 
can be expanded into a polynAIDial series form, the excitation f (t) is a zero mean 
Gaussian stationary process with the correlation function and spectral density 
given, respectively by: 

R1(r) = (f(t)f(t + r)), 

where ( .. . ) denotes the expectation, . 

1 +/oo . 
S1(w) = - R1(r)eiwr dr. 

27f 
(2.2) 

-oo 
We restrict ourselves to the case of stationary response of equation (2.1) if 

it exists. Following the linearization method, we put new linear terms in the 
expression of e(z,z): 

e(z, z) = z + (2h + µ)z + (w6 + >.)z + c-g(z, z) - µz - ).z - f(t). (2.3) 

Let x(t) be a stationary solution of the lineadzed equation: 

x + (2h + µ):i; + (w5 .+ >.)x - f (t) = .0. (2.4) 

Substitute (2.4) into (2.3) one gets: 

e(x,x) = c-g(x,i:) - µ:i;- >.x, (2.5) 

which· is an equation error of (2.1) after linearized. Using the ctiterion of the mean 
square error, the coefficients of linearization µ, ). are determined as follows: 

By the method of Caughey 

(e2 (x, ±)) = ((c-g(x, i:) - µ:i; - >.x) 2
) --+min. 

µ,>.. 
(2 .6) 

It follows: 
(gx) 

). = c--- . 
(x2) 

(2.7) 
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Since the process x(t) is a solution of the linearized equation (2.4) under 
Gaussian process excitation, one gets that x(t) and x(t) are Gaussian or normal 
processes. Hence, all higher moments (x2n), (:i: 2n) can be expressed in terms of 
the second moments (x2

), (±2) by the generalized formula as follows: 

(2.8) 

To close the system (2.7) , other two equations for (x2 ), (±2 ) can "be derived 
from (2.4): 

+oo 

(±2 _ I w
2
S1(w)d(w) . 

) - (2h + µ)2w2 + (w2 - w5 - >.)2 ' 
-00 

+oo (2.9) 

(x2 ) = J S1(w)d(w) . 
· (2h + µ)2w 2 + (w2 - w5 - >.)2 

-oo 

By the method of Local Mean Square Error Criterion (LOMSEC) 
Denote p(x, x) the joint probability density function of the response Gaussian 

processes x(t) and x(t). The criterion (2.6) can be rewritten in the form: 

+ oo +oo 

j ( j e
2 (x , x)p(x , x)dx) dx -trf;,if. (2.10) 

- oo - oo 

Since the integration is taken over all the phase space x , :i; E (-oo; +oo), 
t he criterion (2.6) or (2.10) is called here "Global Mean Square Error Criterion". 
An extension of the concept, which supposes that the criterion (2.6) or (2.10) 
can lead to a large error for some non-linear systems, especially as strong non­
linearity. To increase the accuracy, the expected integration should be taken only 
in a domain where t he original response processes x(t) , x(t) are concentrated; 
LOMSEC requires [8]: 

X 1 X1 

[e 2 (x,x)r 1 · ~ 1 = f (/e 2 (x,x)p(x,x)dx)dx-----+ min . 
X o , z o µ ,). 

(2.11) 

:i;0 X o 

To distinguish the LOMSEC from the .Caughey's criterion, we use the symbol 
] instead of ( ) . One gets from ( 2 .11) ; 

[ 
• ] :i; 1 gx . 

µ _ c X o .• 

- [ :i;2] :: ' 
(2.12) 
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. In the cases (x) = O, all moment [x211], [x211 ] in LOMS~C can also be ex­
pressed in 'terms of the s~cond moments (x2); (x2) by the formula (which is easily 
prov~ble after changing variable X = tUzj where u;n = (x2) 11 ) [8]: 

n = 1, 2,. . . (2.13) 

where 
r 

T(n, r) = J t 2nn(t)dt;· 
0 

n(t) = _l_e-t2 /2. . J27r . 

Input to n, r concrete val~es, one gets T( n, r) is a positive constant. 
For the case of odd order moment, one gets: 

(2.14) 

(2.15) 

It is also easily .provable that the character of linear combination in the Caugh­
ey's process is quite applied for LOMSEC's process, it means: 

b 

[ ag(x) + ,B f(x)] ~ = J (ag + ,B f)p(x)dx ==a [g(x)] ~ + ,B [f(x)] ~. 
a 

The formulas (2.12) show that it is possible to get a lot of various approximate 
solutions depended on the chosen values of finite integration domain. The key 
question is to choose a possible integration domain for LOMSEC in order to get a 
better approximate solution. 

3. Applica.tion of LOMSEC to some non-linear stochastic systems 

We proceed analysis of three nonlinear systems under Gaussian white noise 
random excitation. These systems have exact solutions found by solving the 
Fokker-Planck equation [2], or known thanks to the method of equivalent non-lin­
earization [6]. To find a possible integration domain, we solve the inverse problem 
using the formula of LOMSEC's solution, but (x 2 ) LG replaced by the exact solu­
tion (x2 )e, then one gets the integration interval re corresponding with the exact 
solution (x2 )e· The value of re varies following nonlinearity, therefore a mean value 
r for calculation of LOMSEC solution should be chosen from the series of values 
re. Next step, put r in the formula of LOMSEC 's solution one gets LOMSEC 
solution (x2

) LG. 

3.1. The oscillator with non-linear damping 

Consider the system: 

x + 2cx + 2c1x3 + w5x = uw(t). 

114 

(3.1) 



The analytic solution of this equation has been not found yet. The solution 
found by the method of equivalent non-linearization (x) EN LE is regarded as the 
exact solution [6]. Roberts and Spanos solved the problem corresponding with the 
case: u = ~; w5 = 1; c = 0.05; and I varies. 

The_ equivalent linearized equations of (3.1) with 2c±3 = µx·: 

x + (2c + µ)x + w6x = uw(t). 

The solution of the linearized equation (3.2): 

(l2 
(x2) _ ---­

- 2(2c + µ)w5 

(3.2) 

(3.3) 

The coefficient of linearization µ is determined by the criterion of the mean 
square error (by Caughey or by LOMSEC). 

By the criterion of Caughey: 

Using (2.8) and (3.4) yields 

(3.5) 

Put (3.5) in (3.3) and denote (x)G as the solution obtained by Caughey cri­
terion, after some calculation steps with an attention of that (±2

) = (x2)w5 one 
gets the Caughey solution: 

(J2 

(x
2

) G = 4c(l + 31(x2)w6)w6 . 
(3.6) 

By LOMSEC 

[e2 (x)] ~ 1 = [(2c1±3 - µ±) 2
] ~ 1 -+min=} [aa (2c-1±3 

- µ±) 2
] ~ 1 

= 0. (3.7) 
x o . x o µ. µ xo 

Using (2.13), (2.14) and (3.7) yields 

(3.8) 
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where 
r 

J t4n(t)at 
0 Kr= _r __ _ 

J t2n(t)dt 

n(t) = _1_e-t2/2. 
../2-i 

(3.9) 

0 

Put (3.8) in (3.3), after some calculation steps one gets the formula of the 
LOMSEC solution: 

a2 

(x
2

) LG = 4e-(1 +'"Y(x2)Kr)w5 · (3.10) 

The choice of the possible integration interval r to find the LOMSEC solution: 
Firstly use the formula (3.10) but impute to (x2) LG the value of the found exact 
solution (x2) EN LE, after the calculation one gets: 

1 ( (J2 ) 
Kr= ( 2) 2 2 4c-w2 - (x2)ENLE . 

"f X ENLEWO O 

(3.11) 

Combine (3 .11) with (3.9) to find the integration interval r e corresponding 
with the value of (x 2)ENLE (this means the solving of the contrary problem). 
Then a mean value r chosen is as the middle value of the series of value r e (it 

means r = r e1 + r en ). Use (3.9) and (3.10) with the integration interval r one 
2 

gets LOMSEC solution. 
Consider the case: a = ~; w5 = 1; c = 0.05; mean while 1 varies. The 

calculation result is given in the Table 1. The Fig. 1, 2 show clearly the variat ion of 
re depending on "f, and the error level of t he two methods , where Dg , Dig denote 
the error of (x2)a and (x2)La versus (x2) EN LE · 

Table 1. The calculation result of the case 
a= y'4€· w2 = 1· c = 0 05 · / varies 

' 0 ' . ' 

No "I (x
2
)ENLE (x2)c Dg(%) Kr . r (x2) L G Dlg(%) 

1 1 0.4603 0.4342 -5.7 2.5472 2.65 0.4633 +0.65 
2 2 0.3584 0.3333 -7.0 2.4974 2.59 0.3582 -0.05 
3 3 0.3058 0.2824 -7.6 2.4745 2.59 0.3045 -0.42 
4 4 0.2720 0.2500 -8.1 2.4600 2.58 0.2701 -0.70 
5 5 0.2476 0.2270 -8.3 2.4546 2.58 0.2456 -0.81 
6 6 0.2294 0.2095 -8 .7 2.4406 2.57 0.2270 -1.00 
7 7 0.2147 0.1957 -8.8 2.4337 2.57 0.2122 -1.16 
8 8 0.2025 0.1843 -9.0 2.4310 2.56 0.2000 -1.23 
9 9 0.1923 0.1748 -9.1 2.4629 2.56 0.1898 -1.30 
10 10 0.1835 0.1667 -9.1 2.4248 2.55 0.1810 -1.36 

The possible integration interval r = 2.60; The probability P(r) = 0.9907 
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Fig. 1. Error of Caughey and LOMSEC solutions versus the nonlinearity I 
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Fig. 2. The variation of re versus the nonlinearity/ 

3.2. The oscillator with nonlinear damping following x and x 
Consider the oscillator: 

x+4h(~
2 

+w6~
2

)x+w6x=aw(t) . (3.12) 

By solving the Fokker-Planck equation, one finds the probability density func­
tion p(x ; ±),then gets the exact solution as follows: 

+oo +oo 

(x2 )e = J J x 2
p(x; x)dxdx * 

-oo -00 

TTx2 exp{ - !~Gx'+ ~5x2) 2 }dxdX 
(x2) = -~=--_= ______________ _ 

' T Texp { - !~ Gx' + ~~ x') 2 }dxdX 
-{3.13) 

- oo -oo 

The equivalent linearized equation of (3.12) with 4h ( ~±2 + ~6 x2
) x = µx is 

x + µx + w5x = aw(t) . (3 .14) 
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The solution of the linearized equation (3.14) is 

0'2 

(x2) = 2µw5. . (3.15) 

The equation error of (3.12)' after linearized is 

e(x;x) = 4h(~x2 + ~5 x2 )x·- µx. (3.16) 

By the criterion of Caughey: 

(3.17) 

Solve the system (3.17) to determine the coefficients of linearization; after 
some calculation st~ps with an attention of that (:i:2 ) = (x2)w6, it follows: 

Substitute (3.18) into (3.15), one gets Caughey solution: 

2 O' 

(x )a = 4Vhw5 . 

By LOMSEC 

[ 
2 • ] Xi ,:i:i [ ae] X1 ,:i:1 e (x; x) . => e-a . = 0. 

xo,xo .µ xa,xo 

By the calculation steps which are similar to the above, one gets 

where 

r 

J t4n(t)dt 
0 Kr= _r __ _ 

J t2n(t)dt 
0 

r 

J t 2 n(t)dt 
0 Hr= _r __ _ 

J n(t)dt 
O· 

Substituting (3.21) into~ (3.15) we have: 
• 

118 

n(t) = _l_e-t2 /2. 
J27r 

(3.18) 

(3.19) 

(3 .20) 

(3.21) 
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The method of choosing the possible integration interval r to find the LOM­
SEC solution is similar to the above. Use the equations (3.22) and (3.23) with the 
integration interval r one gets LOMSEC solution (x) LG· 

Table 2. The calculation result of the case w5 = 1; h = 1; a varies 

No (] (x2)e (x2)c Dg(%) Kr+Hr Te (x2)La Dig(%) 

1 0.5 0.14227 0.12500 .-12.140 3.08774 2.23611 0.13672 -3.905 
2 1.0 0.28388 0.25000 -11.934 3.10222 2.27500 0.27343 -3.680 
3 2.0 0.56677 0.50000 -11.780 3.11310 2.27500 0.54687 -3.511 
4 5.0 1.41382 1.25000 -11.587 3.12675 2.27500 1.36717 -3.299 
5 10.0 2.59896 2.50000 -3.808 3.70117 2.81944 2.73434 5.209 

The possible integration interval r = 2.52778. The probability P(r) = 0.98515 

3.3. The non-linear dynamic systems in the form of x+g(x) = aw(t); g(x) 
is a polynomial 

Consider the system: 

x + o:x + clxJx = aw(t). (3.24) 

By solving the Fokker-Planck equation, one finds the probability density function 
p(x), then gets the exact solution as follows : 

+ oo ·1 2 { 2 (0: 2 c . 3) }d x exp - - -x + - x x . 
. +oo a 2 2 3 

(x2)e = f x2 p,(x)dx => (x2 )e = -~00 . · • 

I { ·2 ( 0: 2 . c 3)} 
exp - a2 '2 x + '3 x dx 

(3.25) 

- 00 

-oo 

The equivalent linearized equation of (3.24) with clxlx = >.x is 

x + (o: + >.)x = aw(t). (3.26) 

The solution of the linearized equation (3.26) is 

(3.27) 

By the criterion of Caughey: 
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Solve the equation (3.28) to determine the coefficients of linearization: 

(3.29) 

Since lxlx2 is an even function, one gets: 

00 00 

(ixJx2
) = 2 J JxJx2 P(x)dx = 2 J x3 P(x)dx, (3.30) 

0 0 

where P(x) is the normal distribution: 

1 { x
2 

} P ( x) = exp - - · 
V'Ziax 2a~ 

(3.31) 

Substituting (3.31) into (3.30) with taking a; = (x2
) in (3.31) into account, it 

follows: 

From (3.32) and (3.29), one gets: 

,\ = 4c:vTx2} . 
vz;i 

(3.32) 

(3.33) 

Substituting (3.33) into (3.27), one gets the equation to find Caughey solution: 

2 4c: ( 2 ~) a2 ( ) &(x )G + ~ X )GV \X2/G - - = 0. 3.34 
y27r 2 

By LOMSEC 

[e 2 (x)] :: . [(c:JxJx - ,\x) 2
] :: -+ m]n => [:,\ (c: lxJx - ,\x) 2

] :: = 0. (3.35) 

Solve the equation (3.35) to determine the coefficients of linearization: 

(3 .36) 

Let x 0 = -rax, x 1 ='Tax, x = tax one gets: 

TO":r. 

[l xlx2
] ~~:: = 2 J x3 P(x)dx = 2(x2).J(x2)K1r (3.37) 

0 

ru :r. 

and [ x 2
] ~~:: = 2 J x 2 P(x)dx = 2(x

2)K2r (3.38) 

0 
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where 
r r 

Kir = J t3n(t)dt, K2r = J t2n(t)dt, n(t) = }i;e-t2
12

• 

0 0 

Substituting (3.37) and (3.38) into (3.36), one gets the coefficient of linearization: 

A= c~Klr = c:~Kn (3.39) 
K2r · 

where 
T 

K _ Kir 
T - K T 

2r I t 2 n(t)dt 

J t3n(t)dt 
0 

(3.40) 

0 

Substituting (3.39) into (3.27), one gets the equation to find LOMSEC solution: 
. 2 

a(x2) LG + cKr (x2) LG J (x2) LG - ·~ = 0. 
. 2 

(3.41) 

Choice of the possible integration interval r to find the LOMSEC solution: use the 
formula (3.41) but impute to (x2 )LG the value of the found exact solution (x2 )e, 
after the calculation one gets: 

1 ( (J2 ) Kr = 3/2 - - a(x2)e . 
c(x2)e 2 

(3.42) 

Combine (3.42) with (3.40) to find the integration interval re corresponding with 
the value of (x2 )e· Then a mean valuer chosen is as the middle value of the series 
of value re. Use (3.40) and (3.41) with the integration interval r one gets LOMSEC 
solution (x)LG. 

Table 3. The calculation result of the case a = 1, a = 1.4, c varies 

No c {x2}e {x2}G Dg(%) Kr. r {x2 }c.G Dlg(%) 

1 0.5 0.61257 0.60475 -1.277 1.53274 2.91594 0.61632 0.612 
2 1 0.47861 0.46840 -2.132 1.51428 2.79575 0.48003 0.297 
3 2 0.35253 0.34190 -3.015 1.49886 2.71028 0.35203 -0.143 
4 3 0.28811 0.27805 -3.491 1.49134 2.67233 0.28691 -0.416 
5 5 0.21911 0.21033 -4.008 1.48378 2.63594 0.21751 -0.729 
6 10 0.14711 0.14040 -4.555 1.47621 2.60132 0.14552 -1.079 

... 

7 20 0.09661 0.09183 -4.944 1.47104 2.57861 0.09531 -1.339 
8 50 0.05421 0.05136 -5.272 1.46682 2.56055 0.05337 -1.564 
9 80 0.04006 0.03790 -5.382 1.46542 ,2.55463 0.03940 -1.641 

10 100 0.03446 0.03278 -5.422 1.46493 2.55260 0.03408 -1.668 

The possible integration interval r = 2.73427; The probability P(r) = 0.99380 
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4. Conclusions 

Through the non-linear systems considered, the LOMSEC technique allows 
to get better solutions than that using Caughey Criterion (in many cases the 
Caughey's error unacceptable as s·howed in [11]). That is a significant advantage 
of LOMSEC. 

The obtained results show that for . the considered systems (including [10, 
11]) there exist values of integration interval re allowing to get the exact solution 
when using LOMSEC technique. It means that in principle, it is possible for 
LOMSEC method to find exact solution, meanwhile this is impossible for the 
Caughey technique. 

By the way of changing the limitation of integration domain, the LOMSEC 
provide~ with a lot of different approximate solutions (the case of r = oo LOM­
SEC gives Caughey solution). This is an important base to create the method of 
continuous approximation for finding a better solution than the previous one. 

The investigation result leads out a new suggestion for choosing the integra­
tion interval. r (for example it is quite possible to choose r = 2.5) for general 
application to the similar non-linear stochastic systems. This makes the applica­
tion more convenient to solve the practical technical problems. 
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TUYEN TiNH H6A cAc Ht PHI TUYEN CHJU KicH DQNG NG.Au NHIEN 
~ .... ,,J ,,., .. .. 

BANG TIEU CHUAN SAi SO BINH PHUONG TRUNG BINH KHU VVC 

Bai bao trlnh bay phan tlch bah~ phi t~ygn ch!u kich d{mg ngiu nhien b~ng 
tieu chufu sai so blnh phtrcmg trung blnh khu V\fC - m(_)t phat trign ctl.a phrrcmg 
phap tuyen tfnh h6a trrcmg drrcmg Gauss do Caughey de xuat. Cac ket qua nhc%n 
du-qc chi ra r~ng ky thu~t m&i cho phep nh~n drrqc l<ri giai chfnh xac hem so v&i 
dung tieu chu~n Caughey. Bai bao drra ra mc;>t so ket lU:~n m&i ma chu-a drrqc 
phat hi~n bcH cac tac gia nghien crru trrr&c day. 
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