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ABSTRACT. The interaction between nonlinear oscillations is an interesting problem 
which has attracted many researches. The interaction between forced and parametric 
excitations and between two parametric excitations of first and second degrees and first 
and third degrees, is informed in [l ]. In the present paper, we study interaction between 
two parametric excitations of the second and third degrees . The asymptotic method of 
nonlinear mechanics in combination with a computer is used. 

1. Stationary Oscillations 

Let us consider a dynamic system governed by the differential equation 
- ' 

x + w~--4 = e:{ ~x - hx -1x3 + 2px2 cos wt+ 2qx3 cos(2wt + 2a) }, (1.1) 
. ~ ... ~ 

where 2p ; '.::. 0, 2q > 0 are intensities of parametric excitations of second and 
third degrees, respectively, and 2a (0 :S 2a < 27T) is the phase shift between two 
excitations, h ~ 0 is the friction coefficient, 1 is the coefficient of restoration of the 
third degree, e: > 0 is a small parameter, e:~ = w2 - 1 is the detuning parameter 
and 1 is the own frequency of the system under consideration; overdot denotes the 
derivative relative to time. 

The solution of equation (1.1) will be found in the form 

x = acos'l/;, ± = - awsin'I/;, 1/; =wt+ 0, (1.2) 

where a and (} are unknown functions of time, which satisfy the relationship 

a cos 1/; - a(} sin 'ljJ = 0. (1.3) 

By substituting (1.2) into (1.1) and combining it with (1.3) we obtain the following 
equations for new variables a and 0: 

{ 

. CF . ·'· a= - - sin 'f'• 
w 

. c 
aO = - w F cos 1/;, 

(1.4) 
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where eF denotes the right hand side of equation (1.1). In the first approximation 
we can replace (1.4) by averaged equations ' 

a= -~(Fsin'lj;), 
w 

. c 
aO = --(Fcost/J), 

w 

(1.5) 

where (1) is an averaged value in time of the function 1. It is easy to verify the 
following form of equations (1.5): 

{ 

a= -
4
: [2hwa + pa2 sinO + qa3 sinO + qa3 sin(20 - 2a)], 

aO = -
2
: [ (A- ~'"Ya 2)a + ~pa2 cosO + qa3 cos(20 - 2a)J. 

(1.6) 

The stationary amplitude a = a0 = const -=/- 0 and phase 0 
satisfy the equations 

Oo = const 

{ 

/o = 2hw + (pao cos a) sine+ (pao sin a) cos e + qa6 sin 2e = o, . 
3 . 3 3 . 

Yo = ~ - 4'"Ya5 - 2pao sin a sine+ 2pao cos a ·cos € + qa6 cos 2€ = 0, 

€ = Oo - a. · · 

(1.7) 

The elimination of the phase 00 between two equations (1.7) can be realized 
through two steps [ 1]. The first step is to transform ( 1. 7) into a system of two 
equations with trigonometric fundio11s of only one argument .e by means of the 

transformation 

f = -'-(~pcos a+ qao cos€ )aofo + ( - ~psina + qa~sin €) aogo 

= A sin€+ B cos€ - E = 0, 

g = -(~psina + qao sine) aofo + (~pcos a - qao cos e) aogo 

= G sin € + H cos € - K = O, 

with determinant 

T = a2 (q2a2 - _!_P2) 
0 0 16 ' 
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where 

Solving equations {1.8) relative to sine, cos ewe obtain 

here 

D = I~ ! I = T2 - (X2 + B2), 

D1 = I ~ ' ... ! I = -ET - (EX+ BK)' 

D2 =...I ~ - · ; I= -KT+KX-BE. 

The amplitude - frequency relationship will be 

W(~,a6) =Di+ D~ - D2 = 0. 

As shown in [1] one can present (1.11) in the form 

where 

{1.10) 

{1.11) 

(1.12) 

Wo(~, a6) = -T3 + [2(X2 + B 2) + E 2 + K 2]T (1.13) 

. + (X2 + B 2)(Pf +Qi - P5 - Q5) + 2X(E2 - K 2) + 4EBK, 

P0 = 2hw, 

P 
5 . 

1 = -pa0 sma, 
4 
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and the expressions T, X, B, E, Kare given by formulae (1.9) and (1.10). Using 
the equation 

Wo(Ll, a~)= 0, (1.14) 

we obtain the resonance curves depending on the parameters of the system under 
consideration. Fig.1 shows the resonance curves for the parameters q = 0.08, 
p = 0.04, / :__ 0.2, h = 0.01. The resonance curves consist of two quasi-parallel 
"parabola" branches, 1 and 2. The functi<?n W 0 (Ll, a6) vanishes on these branches, 
it is positive between these branches and is negative in the other parts of the plane 
(a6, Ll). In figure 1, curve 3 represents the equation D = 0, which divides the plane 
(a6, Ll) into the regions of D > 0 and D < 0. 

Increasing the friction coefficient h (see Fig. 2 for q = 0.08, p = 0.04, / = 0.2 
and h = 0.02) the resonance curves move up . 

Increasing the intensity of the parametric excitation of the third degree (pa­
rameter q), the resonance curves spread wide (see Fig. 3 for q = 0.11, p = 0.04, 
/ = 0.2 , h = 0.01 and Fig. 4 for q = 0.2, p = 0.04, I = 0.2, h = 0.01). The stable 

. . . . ~ 

branches of the resonance curves disappear when q is large enough (see Fig. 4) . 

Increasing the intensity. of the parametric excitation of the second degree 
(parameter p), the upper branch of the resonance curve moves up and the lower 

·branch moves down. (see Fig. 5 for q = 0.08, p = 0.05, I = 0.2, h = 0.01 and 

Fig.6 for q = 0.08, p = 0.07, 1=0.2,h=0.01). 
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Fig. 1. Resonance curves for q = 0.08, p ; 0.04, 1 = 0.2, h = 0.01 
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Fig. 2. Resona~ce curves for 

q = 0.08, p = 0.04, / = 0.2, h = 0.02 
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Fig. 4. Resonance curves for 

q = 0.2, p = 0.04, / = 0.2, h = 0.01 
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Fig. 9. Resonance curves for 

q = 0.11, p = 0.04, / = 0.2, h = 0.01 
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Fig. 5. Resonance curves for 

q = o.os, p = -0.os , / = 0. 2, h = 0.01 

Strongly increasing both intensities p and q, we have the resonance curves 
shown in Fig. 7 {for q = 0.7, p = 0.4, / = 0.2, h = 0.1). 

2. Stability of s~ationary Oscillations 

The variational equations for the stationary solution of equations (1.6) are of 
the form 
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Fig. 7. Resonance curves for large 

intensities of parametric excitations 

q = 0.7, p = 0.4, / = 0.2, h = 0.1 

d c ar ar - 8a = --{ (-) oa + (-) 80}, 
dt 4U? aa 0 ao 0 

d c {(ag*) (ag*) } ao - 80 = -- -- 8a + - {j() , 
dt 2w aa 0 ao . 0 

(2 .1) 

where 

{ 

f* = 2hwa + pa2 sin()+ qa3 sin(20 - 2a) , 

( 
3 ) 3 (2.2) g* = ~ - 41a2 a+ 2pa2 cos() + qa3 cos(20 - 2a) . 

The char~cteristic equation for (2.1) is 

2 c [(Bg*) a0 (Bf*) J c
2 

ao>. + - - - + - - - >. + - L = 0 , 
2w ao 0 2 aa 0 8w 2 

(2.3) 

.L = (ar) (ag*) _ (ar) (ag*) . 
aa 0 ao 0 ao 0 oa 0 

(2.4) 

Since N = ( 8:o* ) 
0 

+ ~o (ala* ) 
0 

= 2hwa0 , then the first stability condition N > O 

· is fulfilled for h > 0. The second stability condition will be 

L > 0 . (2.5) 

Since (!*)
0 

= a0 f0 = 0, (g*)
0 

= aog0 = 0 on the resonance curve (see (1.7) and 
(2.2)), then from equations (1.8), on this curve we have 

L
2 

= (at) · (ag) ·_(at) (ag) _ 2-rL aa 0 ao 0 ao 0 aa 0 - a6 . (2.6) 
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or 

In [1], it was proved that 

1 aw 
L2 = --·-· 

2D oa 

Hence, the stability condition (2.5) leads to 

a6 aw a6 awo 
---- = --- > 0. 
2DT Ba 2D aa0 

1 aw 
D Ba6 > o. (2.7) 

With this inequality we identify the stable and unstable branches of the resonance 
curve W0 = 0. The curves W0 = 0 (curves 1 and 2) and curve D = 0 (curve 3 in 
Fig.1) divide the plane (a6, ~) into regions where the functions Wo and D have 
either a positive or a negative sign. The curve 1 lies in the regions of negative 
function D. Following the rule shown in [2], when moving upwards along a straight 
line parallel to the ordinate axis a6 which cuts resonance curve, if one moves from 
the zone W 0 > 0 (W0 < 0) to the zone W0 < 0 (Wo > 0) then the intersection point 
of the straight line with the resonance curve corresponds to the stable (unstable) 
state of oscillations. Similarly, we can identify the stability of the branches of 
curve 2, which lies in the zone D > 0. In figures 1-6 the stable (unstable) branches 
are represented by heavy (dashed) lines, where the inequality (2 .7) is fulfilled (not 
fulfilled) . It is easy"' to shpw that the zero solution a = 0 of equations (1.6) is 

stable. 

1. Concluding remark 

In this paper the asymptotic stationary solutions of equation (1.1) and their 
stability are of special interest. The problem u:rider consideration becomes compli­
cated due to the appearance of trigonometrical functions with different arguments. 
By suitable transformation the phase elimination is realized and the equation for 
amplitude and frequency (resonance curve) is obtained. The resonance curves 
sonsist of two "parabola" branches. Their location and shape depend on the pa­
rameters of parametric excitations and on the coefficient of friction. The stability 
of stationary_ solution is investigated by using the inequality (2. 7). 
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TUONG TAC GIUA HAI KiCH DQNG THONG SO 
BA.c HAI v A BA.c BA 

Bai bao trlnh bay kgt qui nghien cli-u sv- tu-ong tac giira hai kfch d<?ng thong 
so b~c hai va b~c ba, du-qc mo ti b&i phu-ong trlnh (1.1). a day da str dvng 
phu-ang phap ti~m c~n cua ca hc;>c phi tuygn· kgt hqp v&i may tfnh. Vi~c khtr pha 
cua dao d(>ng dirng da drrqc thv-c hi~n b~ng nhirng phep bign d6i d~c bi~t. Cac 
du-0-ng c(>ng hu-&ng gom hai nhanh d~ng pa-ra-bon ngli-a v&i kfch thu-&c va d~11g 
phv thu9c vao cac thong so cua ki'.ch d<?ng thong so va h.rc cin. Van de 6n d!nh 
cila dao d(>ng dirng cling da drrqc xet chi tiet. 
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