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A MIXED· PROBLEM OF ACTIVE 
AEROSOL POLLUTION 

HOANG DINH DUNG 
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ABSTRACT. The mixed problem of active aerosol pollution is stated in the mathemat­
ical modeling of environment problems [1] and was studied by some authors (see [1], [2], 
[3] , ... ). In this work we give the solution using the theory of Schwart distributions . 

1. Introduction 

Let G be a cylindrical region in the space R 3 of the point x = (x 1 ,x2 ,x3 ) 

with sufficiently smooth boundary BG= 8G0 u BGc U BGh , where BGo , BGc and 
BGh being t he bedding (x3 = 0), lateral and upper (x3 = h) surfaces, respectively. 

Assume that the stack of a plant emits a mixture of pollutants at the point 
source x 0 = (x~,x~,h0 ) E G. Denote by cpj , i = 1,N, the concentrations of 
aerosols. Let these pollutants be converted from one form to another, that is, we 
may have the following chains: 

'Pi = 'Pj1 --+ 'Pj2 --+ 'Pj3 --+ ... , i = 1, N. 
/ ' 

For simplicity of presentation, let us consider the conversion process for only 
a pollutant corres~onding to the concentration cp 1: 

'Pl --+ 'P2 --+ · • · --+ 'Pm (1.1) 

the m-th pollutant is not converted to another form. Then, by [1], 'Pi, i = 1, m , 
satisfy the following equations and conditions: 

Acp1 + a1cp1 = f, 
Acp2 + a2cp 2 - 8-1 'P1 = 0, 

Acpm-1 + am-1'Pm-1 - D-m-2'Pm-2 = 0, 

Acpm + Um-l 'Pm- 1 = 0, 
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(1.2) 



where 

cpi(x, t) = cp?(x) fort= 0, x E G, i = 1, m, 

cpi = cpi on anc if Vn = V · n < O, 
acp · -a i = 0 on anh if Vn 2: 0, 

X3 

acp· 
-a i + (Jcpi = 0 on BOo if Vn 2: O, 

X3 

a a2 a a a a 
A = - + V · \7 - µ- - µ- - - - -v-

at ax2 ay2 ay2 az az ' 

dicV = o, 
V = ( u, V, W) is the wind velocity; µ and LI are the horizontal and vertical diffusion 
coefficients, respectively; Ui, i = 1, m - 1, is the transformation coefficient of the 
i-th pollutant, fri = ui + si, i = 1, m - 1, si is the conversion coefficient of the i-th 
pollutant to (i + 1)-the pollutant; cp~ and cp'f, i = 1, m, are the given functions; n 
is the outer normal to aG; 0 S ,B(x) S ,80, ,80 is a constant; anc = BGc x {O, T), 
ano = BGo x (0, T), anh = aGh x (0, T), ano u anc u anh = an, an is the 
boundary of n, n G x (0, T) = {(x , t) : x E G, O < t < T < oo }. 

2. Exact solution 

Suppose that there are more than three concentrations (m > 3) in t he chain 
(1) and that the components 4, 5, .. . are not harmful and may be neglected. Thus, 
we consider the system (1.2) in the following form: · 

Bcp1 ocp1 acp1 acp1 (a2 cp1 a2cp1) a ( acp1) at + U ax + V ay + W az - µ ax2 + 8y2 - az LI az . + Ui 'P l = f , 
2 2 

.a'P2 acp2 acp2 acp2 (a 'P2 a cp2) a ( ocp2) ·-- +u-- +v-- +w-- -µ -- + ~- - - . v--
at ax ay az ax2 ay2 az az 

+ U2<p2 - U1 cpl = 0, 

acp3 acp3 acp3 acp3 (a 2cp3 a
2
cp3) a ( acp3) -- +u-- +v-- +w-- - µ --+-- - - LI - -

at ax ay az ax2 ay2 az az 
+ U3cp3 - U2<{)2 = 0. 

Let u 1 f. u 2 f. u3 and for the sake of simplicity we assume that µ = LI = 
canst 2: 0, thus, the last system has the form: 

Pepi + U1 'Pl = f, 
Pcp2 + U2<.p2 = 0-1 'Pl, 

Pcp3 + U3<.p3 = fr2'P2 , 
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(2.1) 



where 
a 

p = - + v . v - µtl.. at · 
With the same way as in [1] (see Sec. 7.3, Chap. 7) one may reduce (2.1) to 

the following system: 

where 

Pt/;1 + a1tfi1 = f, 
Ptfi2 + a2tfi2 = f11/, 

Ptfi3 + a3tfi3 = f11f, 

tP1 = 'P1, 1/J2 = f11'P1 + (a1 - a2)'P2, 

(2.2) 

1/J3 = a1<p1 + (a1 - a3)cp2 + .;._(u1 - u3)(u2 - u3)cp3. (2.3) 
0"2 . 

Thus we have three independent problems with the same form and they may be 
solved by one same method. After solving this problem one C(}.n find 'Pi ( i = 1, 2, 3) 
from (2.3). Therefore, it is sufficient to solve one of the equations for 1/Ji (i = 1, 2, 3). 

For an illustration we consider the following problem: 

where 

Q'l/J = f in n, 
1/J = 1/Jo(x) fort= 0, x E G, 

1f; = g on anc if Vn < 0, 

B'lf; = o on an0 u anh if Vn ~ 0, an 
Q =: P+ 'a. 

(2.4) 

(2.5) 

Note that the existence and uniqueness of the solution for the problem (2.4) , 
(2.5) is proved quite analogously as in [4] for an analogous mixed problem (see 
Secs. 2, 3). 

We now wish to find a solution in the space of Schwartz distributions D'(R+. x 
R 3 ). For this purpose, we first continue the functions 1/J and f by zero onto 
n- R 1 x E 3 \ n and denote the extend!!d functions by ~ and j respectively. 
In accordance with the general theory (see Sec. 15, Chap.3, [5]) the differential 

equation corresponding to the problem (2.4), (2.5) in D'(R+ x R3 ) has the form 

- - - .· a 
Q\I! = f + \I!0 (x) x o(t) - an (§San), . (2.6) 

where ~0 (x) is the extended distribution of \I!0 (x) by zero onto G- = R 3 \ G, o(t) 
a 

is the Dirac distribution, - -a (gSan) is the generalized double layer on an with n . 
surface moment density g uniquely defined by the function g and the surface an. 
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-Let V =canst, a= canst 2 0. T4en, the fundamental solution in D'(Ri xR3 ) 

of the operator Q may be written in the form [4]: 

_ O(t) { [ jx-Vtj
2
]} 

E(x, t) - ( 4µ7rt)3/ 2 exp - at+ 4µt , (2.7) 

where O(t) is the Heaviside unit function. 

Thus, the unique solution in D'(R+ x R3 ) of the problem (2.4), (2.5) has the 
form: 

~ = J * E + [~0 (x) x 8(t) ] * E - [:n (98an)] * E. (2.8) 

We now consider the summands of (2.8) in a classical case. Let f be a finite 
(with respect to x) distribution on G, f belong to L 2 (G) and satisfy the following 
estimate in each region {(x,t): x E G, 0 :St :ST}: 

(2.9) 

where e: is an arbitrary constant 2 0, Ct ,e is a constant and it may be assumed that 
t_!iis q-i:antity does not decrease with respect to T. Then the dispersion potential 
'lj;1 = f * E exists and is expressed by the form:· 

t -

~1 =I I f(y,r) exp {- [a(t ~ r) + l(x -y) - V(t - r) j2] }dydr. 

0 
R

3 
[4µ7r(t-r)] 3

/
2 4µ(t-r) · 

. (2.10) 

It is easy to verify that '!/;1 satisfies the following estimate: 

C (/)e2e jx j2 2 2 1 
l ~1(x t)I < t,e e4ejVI t . t for 0 < t < -- . 

, - (1 - 16e:µt) 312 16e:µ 

From the last inequality follows, for arbitrary A > 0, 

jxj<A 
~i(x,t)-----+ 0. 

t-++O 
(2.11) .. 

Consider the surface dispersive potential ~2 = [~o(x) x 8(t)] * E. Assuming 
that 1/Jo(x) E L 2 (G), we have 

- O(t)e-o-t I - _ lz-y-Vt1
2 

'11 2 (x, t) = (
4

7rµt) 3! 2 w0 (y)e 4µt dy. (2.12) 

Ra 
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Using the equality: 

from (2.11) we get 

J e-1112 d~ = 7r3/2' 

Ra 

lim '1t 2 ( x, t) = w o ( x) , x E G. 
t--++0 

(2.13) 

- a 
The third summand \lf 3 = -an (§ban) * E in (2.8) is a potential of double 

layer on BO. Let the given function g be continuous on BOc, then one has 

where 

T - ff- BE(x-~,t-1) 
W3 = g(~, 1) Bni ds 1d1, 

0 8G 

on BOc, 

on B00 u aoh, 
for t ::::; 0, x E G. 

(2.14) 

It follows from (2.5), (2.8) and (2.13) that the given function g must satisfy 
the following condition: 

T 

f f BE(y - rJ T - 1) 
g(~,1) OrJ; ds1d1 = g(y,r) (2.15) 

0 8G
0 

. 

One may reduce (2.14) to the following equation 

T 

f f oE(rJ,/) 
g(y- ~,r - 1) a'r/1 ds1d1 = g(y,r),. 

0 8G 0 

Taking (2.7) into account, we see that the kernel of the last integral equation 
processes integrable singularity. The investigation for the integral equations with 
the kernel of similar form is presented in [6] (see 15, Chap. 4). 

Finally, it is easy to verify that the fundamental solution E satisfies the equa­
tion 

Qce.E = 0 in 0, (2.16) 

where Qce. is the differential operator Q with classical derivatives. Hence, by 
virtue of (2.10), (2.12)-(2.16) one may verify directly that the function ~ defined 
by (2.8) is the classical solution of the problem (2.4), (2.5). Note that this solution 
is a piecewise continuously differentiable function, for the condition of continuous 
in 0 solution, instead of the condition (2.15) one has a nonhomogeneous integral 
equation. 
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Thus, we have obtained the following .result. 

Theorem. The unique solution in D'( Rix R3 ) of the mixed problem (2.4), (2.5) 
is expressed by the form (2 .8) . The classical solution in the class of continuous 

· differentiable Junctions for this problem has the form: 

t -
~=I I f(y,r) 3 2 exp { - [a(t - r) + J(x - y) - V(t - r)J2] }dydr 

. 
0 

R
3 

[4µ7r(t - r)) I . ·· 4µ(t - r) 

O(t)e-ut I - { Jx - y - VtJ 2
} + ( )3; 2 Wo(Y) exp - dy 

4?Tµt 4µt 
R3 

T 

I I . BE(x - ~' t - 1) 
+ . g(~, 1) an~ . ds~d1, 

.b 8G 

where the function E(x, t) is defined by (2.7). 
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BA.I TOAN HON HQ'P GOA quA TRINH 6 NHIEM KHi THAI c6 HOA.T TiNH 

B~i toan h6n hqp ctla qua trlnh o nhi~m khi'. th<li c6 ho~t ti'.~h dlrqc phat 
bi~u t"5ng quat trong [1] va da dlrqc m<}t so tac gia quan .tam (xem [1], [2], [3], ... ). 
Trong bai nay, stl- dvng ly thuygt cac phan bo ( cac ham suy rc;mg) chung toi cho 
nghi~m t5ng quat .va nghi~m c5 dign cua bai toan nay. 
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