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ABSTRACT. In the paper the bifurcation theorem on the problem of thermal conve,ction 
and contaminant transport in underground water is proven. 

1. Formulation of the problem 

Equations of the problem on thermal convection and contaminant transport 

in underground water assume the dimensionless form [1 ] 

v = -a\lp + RTT"f - RcC"f 
aT 
at + v · "VT = b.T, 

ac 1 
c- +v· \JC = - b.C ot Le ' 
divv = 0, inn, 

with the boundary conditions: 

and initial conditions 

To = T(xo, Yo, zo), Co= C(xo, Yo, zo) at t =to, 

(1.1) 

(1.2) 

(1.3) 

(1.4} 

(1.5) 

(1.6) 

where the following notations are used: v denotes the velocity, p - pressure, T -

temperature, C - concentration a = +, k - coefficient of permeability, H - a 
Hv 

length scale, v - coefficient of kinematical viscosity, c = p_, cf> - porosity, u - heat 
. (}' 

capacity of porous media, "{ - unit vector of the vertical upward axis Ox3 in the 
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Cartesian coordinate system Ox1x2xa, Le - .Lewis number, RT - thermal Rayleigh 
number, Re - concentration Rayleigh number. 

In [2] it is proved that there exists a mechanical equilibrium in the fluid: 

v=O, 

Co= -Ag'xa +Bf, 
To = -A6 xa + Bf, 

Ag, IJf , A6, B'{ the constants . 

(1.7) 

In [2] the existence theorem and the spectrum theorem of the linear problem 

are proved. 

In t his paper we prove the bifurcation theorem of the problem 

v = -a"Vp- RcC1 + RTT1, 

v · VT - v · 'Y = D..T, 
. . 1 

v · "VC-v·;;v= -D..C 
' Le ' 

Vn = 0, T = o, c = 0 on n. 

2. The bif.urcation theorem 

From (1.1) - (1.4), (1.7) we can obtain 

Suppose that 

v = -a"Vp .....!. RcC'Y + RTT1, 

8T 
at - v . 'Y = D..T, 

ac 1 
eat -v·'Y= Le4c, 

divv = o. 

v(x1, x 2; xa, t) = v(x1, x2, xa) e- >.t , 

p(x1, x2, X3, t) = p(x1, x2, xa)e->..t , 

C(x1, x2, xa, t) = C(x1, x2, xa)e->..t, 

T(x1, x2, X3, t) = T(x1., x2 , xa)e->..t. 
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(1.8) 

(1.9) 

(1.10) 

(1.11) 

(2.1) 

(2.2) 

(2.3) 

(2A) 



From (2 .1)-(2.4) we obtain 

v = -a\Jp- RcC"i + RTT1, 

- >.T - v · 1 = b..T, 
1 

->..cC-v·"i= -b..C 1 Le ' 
divv = o, 
Vn = 0, c = o, T = 0 on an. 

(2.5) 
(2.6) 

(2.7) 

(2.8) 

(2.9) 

The problem (2.5)-(2.9) is equivalent to the following operator equations in 
the spaces L 2(n) and H 2(n) [3] 

v = -ReB12C + RTB12T, 

>.T + B21v =AT, 
1 

>.cC + B21v =-AC, 
Le 

(2.10) 

(2.11) 

(2.12) 

where L 2 ( n) is the space of quadratically integrable vector functions in n, H 2 ( n) 
is the space of quadratically integrable scalar functions in n 

L2(n) = · { v, v E L2(n), divv = 0 inn Vn = 0 on an}, 

B12C =TIC""{, B12T =ITT""{, B21 v = (v · 1), 

II denotes an operator of orthogonal projection to L2 (n). The operator A is self­
adjoint positive definite in H 2 ( n), its inverse operator is positive . and compact 
[3]. 

In [2] it is proved that if Rr > 0, Re < 0 or Rr < 0, Re > 0 all nor­
mal disturbances vary monotonically with time-being either damped or amplified 
(monotonicity principle for disturbances) (see [4]). 

Putting >. = 0 in (2.10) - (2.12) we obtain 

v = -ReB12C + RrBi2T, 

B21v =AT, 
1 

B21v =-AC. 
Le 

From (2.13)-(2.15) we have 
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(2.13) 

(2.14) 

(2.15) 



or 
v = (RT - LeRc).Av, 

A= B12A-
1 

B21. 
(2.16) 

Since the operator A- 1 is positive and compact, operators B 12 , B 21 are ad­
joint and bo1!nded, so the operator A is self-adjoint positive and compact and the 
eigenvalues R = RT - LeRc are discrete and real. 

The eigenvalues R =RT - LeRc of the problem (2.16) are called the critical 
values of the problem {2.10)-(2.12). We have 

Lemma. The critical values R = RT - LeRc of the problem {2.10)-(2.12) are 
discrete and real. 

We rewrite the problem {1.8)-(1.11) in the equivalent operator equations: 

or 

v = -RcB12G + RTB12T, 

(v ·'VT) - B21 v = -AT, 
1 

(v. 'VG) - B21v = - Le AG 

v = -RcB12G + RTB12T, 

T = -A-1(v ·'VT)+ A- 1 B21v, 

G = -LeA-1(v ·'VG)+ LeA- 1 B 21v. 

From (2.18), (2.19) it follows 

where 

(E + Aui)T = A- 1 B21v, 

(E + Au2)G = LeA-1 
B21 v, 

Au1T = A-1(v ·'VT), 

Au2C = LeA- 1(v · 'VG). 

(2.17) 

(2.18) 

{2.19) 

(2.20) 

{2.21) 

As in [5] it is easy to prove that the operators (E + A ui) and (E + Au2) get 
an inverse operator and A- 1 is its differential Fresher at v = 0: 

( E + Au i)- 1 A - l = A - l + G 1 (v), 

(E + Au2)- 1 A- 1 = A- 1 + G 2 (v), 
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(2.22) 

(2.23) 



where 

i1G1(v)llH1 (0) 
lim 2,0 . = O 

llvl/-+o llvllw 1 (o) ' 
2 ,0 

II G2 (v) II Hl (o) 
lim 2,0 = 0 

l/vll-+o . llv\\wi,o(o) , 

Hi,o(n) = { q E H2(n), "Vq E H2(n), q = 0 on an}, 

W:f,0 (n) = Hi,o(n) x Hi,o(n) x Hi,o(n), 

W:f,0 (n) = { v E W:f,0 (n), divv = 0, v = 0 on an}· 

From (2.20)-(2.23) it follows 

T = (A-1 + G1 (v))B21 v, 

c = Le(A-1 + G2(v))B21V. 

Putting (2.26), (2 .27) into (2.17) we get 

v = --:-LeRcB12(A-I + G2(v))B21V + RrB12(A-1 + G 1(v))B2 1V 

(2.24) 

(2.2~ 

(2.26) 

(2 ,27) 

= (Rr - LeRc)B12A- 1 B21v - LeRcB12G2(v)B21v + RrB12G~(v)B21v 

or 

,v =RA+ Q(v), (2.28) 

Q(v) =:i - LeRcB12G2(v)B21 v + RrB12G1 (v)B21 v, 

· B12, B21 are the pounded operators; using (2.24), (2.25) we get 

\\Q(v)\\Hi (0) 
lim 2

•
0 = O. 

ll vlJ Wi,o (O) 

(2.29) 

This implies tliat the operator A is a differential Fresher of the operator RA +Q 
at v = 0. 

Using the theorem of Krasnoselskii [6] we get 

Theorem. Let Ri =RT, - LeRc, which are eigenvalues of problem (2.13)-(2.15). 
If Rr cind Re are such that R = Rr - LeRc < R1 , then the problem (1.8)-(1.11) 
gets 'only a . trivial solution. If R 1 = RT1 - LeRc1 gets odd .multiplicity then R 1 is 
a bifurcation point of the problem (1.8)..:(1.11). 
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D~NH LY PHAN NHANH NGHI¢M COA BAI TOAN VE 

LAN TRUYEN NHI~T, CHAT TRONG cAc viA Nu6c NGAM 

Bai bao da chrrng minh d!nh ly phan nhanh nghi~m ctla bai toan v'e lan truy'en 
h 'At h~t t , ' , "' n I~ c a rong cac via nrrO'c ngarn. 
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