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- STABILITY ANALYSIS OF CYLINDRICAL SHELLS 
SUBJECTED TO COMPLEX LOADS 

NGO HUONG NHU 

Institute of Mechanics 264 Doi Can, Hanoi, Vietnam 

ABSTRACT. The paper deals with stability analysis of shell on the basis FEM via Castem 
2000. The numerical results of stability problems of cylinders subjected to different loads 
as compress load, pressure, concentrated and combined loads are compared with analytical 
result and give a good agreement. The influence of changing radius of the cylindrical shell on 
the unstable forms and the influence of angles of fibers on unstable behaviour of laminated 
composite shell are considered. Numerical results and corresponding programs by languages 
Gibian given in the paper to realize software Castem 2000 can be applied in the design and 
in the stabili ty analysis of the shell with more complex conditions. 

1. General equations and solutions for the stability problem 

The system of equations for the stability problem of shell with small deflections 
[1] is 

where w is a function of deflection and rp is a stress function. 
In the Cartesian coordinates, we have: 

( 
f:J2w fJ2w 82w ) 

q = - h Px fJx2 + Py fJy2 + 2s fJxfJy 

and the system of equations can be reduced into an eight-order equation: 

D E fJ
4
w (fJ2w) (82w) ( fJ2

w ) h v sw + R2 fJx4 + Px \74 fJx2 +Py \74 fJy2 + 2s\74 fJxfJy = 0. 

(1.1) 

(1.2) 

(1.3) 

a. Circular cylindrical shell subjected to axial compressed distributed in 
plane force p 

In this case the values Py = O; s = 0, the minimum possible critical stress has 
the form [1]: 

(1.4) 
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-* h 
when v = 0.3 then P = 0.605E R. 

b. Circular cylindrical shell subjected to pressure q. 
In this case the values Px = O; Py =/= O; s = 0, the minimum possible critical 

pressure is: 

(R) ( h) 2.s q = 0.92E L R for the middle cylinder and (1.5) 

3D E (h)3 
q = R3 = 

4
(
1 

_ v2 ) R for the long cylinder. (1.6) 

c. Circular cylindrical shell subjected to a combination of pressure q and 
compressible loads 

Then Px =/= O; Py =/= O; s = 0 and the critical pressure is: 

E(~f 
q=--------

[o,83+1, 1 ~/¥] 
(1. 7) 

These results represent the upper bound of the actual collapse load, which will be 
compared later with numerical result of solution by FEM. 

2. The Finite Element Method in the stability problem 
The problem of stability of plate and shell lead to solve an equation of the type 

[3] by FEM: 

[K]{t5} + [Kc]{8} = {P}. (2.1) 

Let system of stresses and body forces can be increased linearly by some scaling 
factor >., when the new value of [Kc] will be : 

[Kc] =,,\[Kc] . 

Thus, the condition of existing distortion of equilibrium state of shell without ex
ternal loads can be written as : 

([K] +,,\[Kc]){ 8} = 0. 

In general it is possible to find non trivial values of ,,\ and "modal shapes" of { 8} 
for which the above equation is satisfied. This is the same problem as the classical 
"eigenvalue" problem: 

([K] - w2 
· [M]){8} = 0 (2.2) 

In practice, we are interested only in the lowest value of ,,\ and its associated mode. 
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The main steps to solve stability problem by FEM are followings: 
1. Determination of the assembled stiffness matrix 

N 

[K]= L [k]~ , 
m=l 

where [k] !'n = f[BmjTcm[Bm]dV is an element stiffness matrix, 
v 

Bm is a matrix of relations between strains and displacements cm= Bmu 
cm is matrix of relation between stress and strains am = cmcm + aim 

2. Determination of stress distributions {a} before unstable state by solving equa
tion: 

[K]{8} = {P} 

3. Definition of [Kc]e, [K c]- "Initial stress stiffness matrix" from stress distri
butions {a} 
4. Solve eigenvalue problem, instead of [M] in the (2 .2) the expression (-1) *[K c] 
is taken. The received eigenvalues >. = (27rw )2 will be the ratio of corresponding 
buckling loads Per to the axial load P applied in the linear prebuckling analysis. 
Then critical stress can be found in the form acr = >.amax· 
5. In the case of laminate composite shell, instead of cm we have to pay attention 
to: 

a. The relations between stress and strain in k-th laminar [2]: 

ak(M) = Q~Ern(x, y) + zQ~k(x, y) ; Q~ = [Q~1]k 

where hk-l :=::; z :=::; h k; z - is the distance from the point M to middle surface. 
b. The relations between stress and strain for plate element of n - layers [2]: 

n 

k=l 

Dij = ~ t(h~ - hL1)(Q~j)k 
k=l 

i, j = 1, 2, 6 - reduced stiffness coefficients. 

Thus, knowing characteristics of composite material of each layer we can calculate 
the element stiffness matrix for n-laminate composite and return to step 2. 

3. Some numerical results of stability problems of cylindrical shells 
subjected to complex loads via Castem 2000 
1. Numerical result in comparison with the analytical result 

a. Consider stability problem of a circular isotropic cylindrical shell subjected 
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to axial compressed in plane distributed load P = 500 N, two ends of cylinder are 
simply supported. The data of cylinder are given: thickness h = 0.004 m, radiu;:; 
R = 0.6 m and length L = 2 m. Here the condition for the shell with middle length: 

fh L (R 
l.38V R < R < 0.57 y his satisfied [1] . The characters of material of cylinder are: 

E = ' 2.1·1011 N/ m2
; v = 0.3. The cylinder is divided into 720 shell elements with 

384 nodes (six degrees freedom at each node) The numerical result shows that : the 
lowest value of the frequency eigenvalue is: w = 29.351 Hz. 

The calculated critical stress is: 

Pere = A· O"max = (27rw) 2 
X O"max = 8.71077 · 108 N/m2

. 

The theoretical critical stress according to (1.4) is : 

Pert= P* = 8.4700 · 108 N/m2
. 

The error between these values is enough small: 

b. Cylindrical shell 

abs(Pert - Pere) x lOO = 2.84263 
Pert 

For long cylindrical shell. Consider the stability problem of a circular isotropic 
long cylindrical shells subjected to outside pressure q = -100 N / m2 , two ends of 
cylinder are simply supported and free. The characters of material of cylinder are 
E = 2.1 · 1011 N/ m2 ; v = 0.3. 

The numerical results are compared with analytical solution (1.6) and given in 
the table 1. 

Cylinder 
(m) w(Hz) 

L = 6; 
R = 0.6; 91.596 
L / R = 10 

L = 10; 
R = 0.5 ; 118.4 
L/ R = 20 

L = 40; 
R = 1 41.859 
L / R = 40 

Calculated 
critical 

pressure(Pa) 

3.30859 E7 

5.56684 E7 

6.91736 E6 
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Theoretical 
critical 

pressure(Pa) 

3.17969 E7 

5.49451 E7 

6.86813 E6 

Table 1 

Error 3 between 
calculated and 

theoretical result 

4.0538 

3,6930 

0.7163 



One notes that the ratio L/ R is greater, obtained results are nearly to theoretical 
results . 

For short cylinders subjected to pressure 
Consider cylinders in the same above conditions of loading, material and follow

ing geometry characteristics: 

l. R/ L = 0.4 and R/ L = [800; 915; 1000; 1067]. Calculated results are compared 
with theoretical ones (1.5) we see that the ratio R/h has an influence in error (see 
table 2). 
2. R/ h = 800 and R/ L = [2 .5; 2.375; 2.25] . Calculated results are compared with 
theoretical (1.5) (table 3) 

R 
(m) 

0.4 
0.8 
3.2 
3.2 
3.2 
3.2 

R 
(m) 

0.8 
0.8 
0.8 

L 
(m) 

1 
2 
8 
8 
8 
8 

L 
(m) 

2 
1.9 
1.8 

h 
(m) 

0.0005 
0.001 
0.004 
0.0035 
0.0032 
0.003 

h 
(m) 

0.001 
0.001 
0.001 

R/ h Calculated Theoretical 

800 
800 
800 
915 

1000 
1067 

L/ R 

2.5 
2.375 
2.25 

critical critical 
pressure(Pa) pressure(Pa) 

3871.6 

2913.8 
2432.8 
2073.9 

Calculated 
critical 

pressure(Pa) 

3871.6 
4262.8 
4691.7 

4065.9 

2911.9 
2327.4 
1980.6 

Theoretical 
critical 

pressure(Pa) 

4065 .9 
4219.9 
4517.6 

c. Cylinder subjected to complex load 

Table 2 

Error % between 
calculated and 
theoretical result 

4.776 

0.065826 
4.5253 
0.72478 

Table 3 

Error % between 
calculated and 
theoretical result 

4.776 
0.39872 
3.8526 

Consider circular isotropic cylindrical shells subjected to complex loads: outside 
pressure q = -100 N / m2 , axial compression p = 50 N and concentrated load Fy = 
80 N at point P(R, 0, 0). Two ends of cylinder are simply supported and free. The 
characters of material of cylinder are E = 2.1 · 1011 N/ m2; v = 0.3; R == 0, 8 m; 
L = 2 m; h = 0.001 m. 

The results are compared with (1.7) and presented in the table 4: 
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Table 4 

Loads 

Pre!'lsure 
Ptei'l!'!Ure and 
compressible loads 
Combination of 
pressure, compression 
and concentrated 

Frequency 
(Hz) 

0.99030 

0.98416 

loads 0.93656 

Note that: 

Calculated 
critical 

pressure (Pa) 

3871.6 

3823.7 

.3462.9 

Theoretical Error 
critical 3 

pressure (Pa) 

4065.9 4.776 

3975.2 3.8108 

- In general the calculated results give a good agreement with theoretical ones 
in many cases with different loads and combined loads. 

- For shorts cylinders the error depends on ratios R/ L or R/ h and one needs 
more careful when applying this software. 

- The critical pressure is smaller when the cylinder is subjected to complex loads. 

2. The influence of the radius of the shell on the critical loads and 
unstable forms 

Consider the cylinder with the same characteristics but various radius R = 0.5 m; 
0.4 m; 0.3 m; 0.2 m and L = 8 m; h = 0.005 m. The numerical results are shown in 
the table 5. 

Note that: 

R (m) 

0.5 
0.4 
0.3 
0.2 

w (Hz) 

33.848 
31.520 
32.580 
25.819 

Table 5 

Critical calculate stress: P · 103 

(MPa) 

1.47272 
1.61183 
2.31375 
2.19192 

- The critical loads increase when the radius are reduced (see Table 5) 
- The unstable forms are changed (see fig 1-3 ) with different R. 
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Fig. 1. The unstable form 

in global when R = 0.2 m 

Fig. 2. The unstable form 

when R = 0.3m 
Fig. 3. The unstable form 

when R = 0.4m 

3. Influence of the length of the shell on the critical stress 
Consider the cylinders with the same material characteristics but R = 0.6 m, 

h = 0.01 m, P = 5000 N and various length: L = 8 m, 9 m, 10 m, 12 m. The 
numerical results are presented in table 6. 

Table 6 

L (m) w (Hz) Calculated critical Classical critical 
stress: P · 103 (MPa) stress P * .103 (MP a) 

8 19.707 2.05597 2.11750 
9 19.313 1.99060 
10 19.250 1.98891 
12 19.677 2.09384 

Stability of the composite shell 
Consider the cylinder R = 0.6 cm; L = 2 m; · t = 0, 004 m under compressible 

loads P = -500 N. It is made from two layer laminar composite material with 
characteristic E 1 =7 · 106 N/m2

; E 2 =1.3·106 N/m2
; v12 = 0.28; Gx = 5·105 N/ m2

. 

The thickness of each laminar is equal to tk = 0.002 m The following angles of fiber 
directions are considered in this paper: () = 30° / - 30°; 45° / - 45°; 60° / - 60°; 
75° / - 75°. 

The boundary conditions 
- One end of cylinder is simply supported: Ux = O; Uy = O; Uz = 0, and the other 

end U x = O; Uy = 0. 
- Compressible load acting at both ends of shell Fx = -500 N. 

The numerical results are given in the table 7 and the unstable forms are 
shown in figures (4 , 5, 6, 7). 
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Table 7 

Qo w (Hz) ,\ Clxx 1th-layer Clxx 2th-layer 
(ao / - ao) 

75 0.17385 1.1932 
60 0.16977 1.1378 
45 0.23453 2.1716 
30 0.22056 1.9205 

Fig. 4. The unstable forms in the 

direction of circulation when a = 30° 

Fig. 6. The unstable forms in the 

direction of circulation when a = 60° 
Remarks 

(N/m2
) (N/m2

) 

14530 14599 
17273 18117 
18783 18646 
16734 16552 

v . ..... . . . .... ... .. .. 

·· ·· .. , 
..... 

.. ~,,,,·· ............. _ .. _ ......... ·· 

Fig. 5. The unstable forms in the 

direction of circulation when a = 45° 

Fig. 7. The unstable forms in the 

direction of circulation when a = 75° 

- The above investigated shell is more stable when angle of fiber a = 45° and 
easier unstable when a = 60° 

- The unstable forms in the direction circulation of the shell depend on the angle 
of the fibers (see fig 4, 5, 6, 7, 8, 9) 
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Fig. 8. The unstable forms in the 

longitudinal direction when a = 60° 

4. Conclusions 

Fig. 9. The unstable forms in the 

longitudinal direction when a = 45° 

This investigation shows that generally the calculated results via software Castem 
2000 for stability problems with different loads have a good agreement with analyt
ical classical results. The long cylinder give better agreement than the short in the 
case when cylinder is subjected to pressure. The influence of the radius and length 
of isotropic cylinders on unstable forms and values of critical stress are investigated. 
The influence of angles of fibers on unstable behaviour of laminate composite shell 
is considered. The given results and corresponding programs are useful to estimate 
capacities when applying Castem 2000 in solving more complex stability problems 
for arbitrary shell . ./ 

This publication is completed with financial support from the National Basis 
Research Program in Natural Sciences. 

REFERENCES 

1. Volmir A. C. Stability of deformed systems. Moscow 1967 (in Russian) 

2. Tran Ich Thinh. Composite material. Mechanics and structural calculation. 
Education Publishing house, 1994 (in Vietnamese). 

3. Zienkiewicz 0. C., Cheung Y. K. The Finite Element Method in structural and 
continuum Mechanics. 1967 McGraw-Hill Publishing Company Limited . 

4. Ngo Huong Nhu. Stability behaviour of laminated composite plates subjected to 
complex loading. Proceeding- Acter of International colloquium in mechanics of 
solids, fluids , structures and interactions. Nha Trang August 2000. p 645- 655. 

5. C.E.A/D.M.T/ L.A.M.S. Castem 2000 Recueil D'exemples commentes. 1992 (in 
French) 

Received April 18, 2001 

255 


