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ON THE ELASTOPLASTIC STABILITY OF 
A PLATE UNDER SHEAR FORCES, TAKING 
INTO ACCOUNT ITS REAL BENDING FORM 
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Vietnam National University, Hanoi 

ABSTRACT. Using the theory of elastoplastic processes and the modified elastic solution 
method we investigate the stability outside elastic limit problem of a plate under shear 
forces, taking into account its real bending form after the loss of stability. An expression 
for determining the critical force is obtained and numerical calculations with various ratio · 
of thickness have been fulfilled, from the results one can see the convergence of the modified 
elastic solution method . 

1. Introduction 

From the experimental results one can see that the bending form of the plate 
under shear forces after the loss of stability has a form of somewhat plane sloping 
roofs, the nodes of which are nearly straight lines. In the investigated case of a long 
elastic plate under shear forces , the slope makes with the long edge an angle about 
54° and the distance between the slopes is equal to 1.22 times of the plate width. 

In the case of elastoplastic stability of a plate subjected to axial and shear forces, 
. considered in [1], because of the complicatedness the author proposes some assump­
tions about the bending form. For reflecting the reality the real bending form must 
be taken into consideration of the elastoplastic stability of plates under shear forces. 

2. Formulation of the problem and the solving method 

Suppose a long plate of width b subjected to the shear forces T along its long 
edges y = O and y = b (see Fig. 1). At any moment t there exists a membrane plane 
stress in the plate 
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<711 = 0, <r22 = 0, <712 = T , SO that <ru = J3 T. (2.1) 

Respective y, the strain state is determined by the stress-strain relationship of 
the elastoplast: c process theory [ 1 J, in this case it has of the form 

i11 = 0, i22 = 0, 

€12 = 37- + ~ (]:_ _ ]:_) 3ri 
7 

= ~ i 
2A 2 P A a,2, 2 P ' 

(ju 

where A= - P = ¢'(s), s-the arc-length of the strain trajectory: 
s 

ds 2 ( .2 .2 . . .2 ) 1/2 2 . 
dt = v'3 €11 + €22 + €11€22 + €12 = v'3€12 , 

From (2.1) ...;- 2.3) we have 

3 dr 
---
2¢'(s) dt 

that yields 

v'3 ds 
2 dt ' 

or Vsdr = ¢'(s)ds , 

Vsr = <ru = ¢(s). 

(2 .2) 

(2 .3) 

(2 .4) 

At the mo ent an instability occurs, a bifurcation of equilibrium states is as­
sumed to appef r, with an infinitesimal small increment of the external force there 
are possible inf rements of deformations (including the bending deformation). Re­
spectively, the internal bending moments [1 J in this case are determined through the 
deflection w of the plate as follows 

Ah3 
( cJ2w 82w) 

Mn = -~ 2 8x2 + 8y2 ' 

Ah
3 (82

w 82w) 
M22 = ----r'S ax2 + 2 8y2 ' 

Ah3 
( fJ2w P 8

2
w ) lvl12 = - - -- + (- - 1)-- . 

i8 8x8y A 8x8y 

The bending e ergy of the plate now is represented as 

6U = - ff [Muo(~:~) + M226(~:~) + 2M12o(;;;Y) Jdxdy 

= Ah
3 

0 ff [(8
2
w + 8

2
w)2 + ( 8

2
w )2 _ 8

2
w 8

2
w 

18 8x2 8y2 BxBy Bx2 By2 

+ (p - 1) ( 82
W )

2
] dxdy, (2.5) 

A . 8x8y , 
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owing to A, P not depending on w. On the other hand we demonstrate the work of 
shear forces 

(2.6) 

Experimental results show that when the instability occurs, the plate makes up 
bending slopes, the nodes of which are nearly straight lines, therefore we choose the 
deflect.ion of a plate in the form 

7rY 7r 
w = f sin b sin f ( x - /Y). (2.7) . 

This deflection will be equal to zero at the long edges and at the node lines x - /Y = 

kf, where k = 0, ±1 , ±2, . .. ; e is the distance between the nodes; ,, e - unknown 
quantities to be determined. 

The elastoplastic stability problem can be solved by using the energy method. 
For this aim, it is necessary to evaluate the bending energy of the plate and the 
work of shear forces. Substituting (2.7) into (2.5) , (2 .6) 

b X-')'y=(k+l)£ 

U = Ah3 J J { [- f7r2 (_!.__ + 12 +_!.__)sin 1rY sin ~(x - !Y) 
18 f,2 f,2 b2 b f 

Q X- ')'y=kf 

7r2/ 1rY 7r ] 2 [ 7r2/ 1rY 7r - 2f [;[cos b cos f (x - /Y) + f 72 sin b sin f(x -1y) 

7r2 1rY 7r ] 2 7r2 7rY 7r 
+ f bf cos b cos f (x - / Y) - f f 2 sin b sin f (x - / Y) x 

[ ( 
7r2/2 7r2) 1rY 7r 7r2/ 1rY 7r ] 

x f ~ + lJi sin b sin f(x - /Y) + ~f f;i cos b cos f (x -1y) 

+ (: - 1) [ f 7r;2 sin 7r: sin ~ ( x - /Y) + f ~; cos 7r: cos ~ ( x - /Y) J 
2

} dxdy, 

b x-7y= (k+l)£ 

L = j j Thj2 [7r;21 sin2 7r: cos2 ~(x - !Y) 

0 x-7y= k£ 

7r
2 1rY 1rY 7r 7r ] - - sin - cos - sin - (x - /Y) cos li(x -1y) dxdy 

bf b b f {. 
k = 0, ±1, ±2, .. . 

after some operations we receive 

Ahsf27r4 f 2 (b)2 2 (p ) ( b
2
)] U,.· . 72bf [ 2 + 612 + ( b) + f, ( 1 + 12) + A - 1 1 + 12 f2 ' (2.8) . 

T j27r2/bh L= . 
4f 

(2 .9) 
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Equating expressions of the bending energy and the work of shear forces gives 
the relation for finding critical forces 

1r

2 Ah2 
[ ( f, ) 2 (b) 2 2 (P ) ( (b 2)] 

T = 18 b2 612 + b + e ( i + 12) + 2 + A - i i + 12 e) .. 
I . . 

Further one needs to seek a minimum of T. Consider two cases: 

a. The case of an elastic plate 

In this case A = P = 3G the expression (2. 10) becomes 

7r
2 D [ 2 ( f,) 2 ( b) 2 2 2] 

T = 21 hb2 fry + 2 + b + f ( 1 + I ) ' 

(2.10) 

(2.11) 

which entirely coincides with the result of an elastic plate made of an incompressible 
material under shear forces [3] with 

Gh3 Eh3 

D=-=-· 
3 9 

f, 
Putting~ = b into (2. 11) 

7r2 D [ 2 2 1 ( . 2) 2] 
T = 21 hb2 61 + 2 + ~ + e i + i , , 

then minimizing the obtained expression 

· gives us 

OT 
o~ = 0, 

OT= 0 
01 

e = i + 12, 

1+12 
2 + e + e ( 1 - 312

) - 612 
= o, 

1 
from where it follows I = J2' ~ = 1.22 or £ = l.22b. 

The criticall forces have been determined 

b. The case of an elastoplastic plate 

In this case 
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P = </>' ( s) = Et ( s) : 

ITu ./3T 
A=-=-=Ee(s) , 

s s 

where Et ( s) - the tangential modulus, Ee( s) - the secant modulus of the material 
9b2 

and with denotation i 2 = h
2

, the equation (2.10) becomes 

.2 7r
2
J3[ 2 2 1 ( 2)2 (Et(s) )( 1

2
)] 

i = 21s 2+61+~+~21+1 + Ee(s) -1 l+e . 

Minimizing i 2 

that yields 

fJi2 
a~= o, 

fJi2 
a,= o, 

1- (1 +12)2 - (Et(s) -1)'2 = 0 
~4 Ee(s) ~4 ' 

2 1 + 1
2 

2 2 ( Et ( s) ) ( 1
2 

) 2 + ~ + ~2 (1 - 31 ) - 61 + Ee(s) - 1 1 - e = 0. 

The expression (2.13) can be rewritten in the other form 

7r
2
J3 [ 2 2 1 ( 2)2 (Et(s) ) ( 1

2
)] 

s = 21i2 2 + 61 + ~ + ~2 1 +I + Ee(s) - 1 1 + e . 

(2.13) 

(2.14) 

(2 .15) 

(2.16) 

The problem determining critical forces of a plate under shear forces reduces to seek 
/, ~ from the equations (2.14), (2.15) , then a substitution of just obtained values 
into (2.16) gives the relation for finding the critical value Ser · Finally the critical 
forces can be evaluated from 

Since the system of equations (2.14) -;- (2.16) is nonlinear , we solve this system 
by using the modified elastic solution method [2]. 

On the first iteration by putting Et(s) = Ee(s) = 3G from (2 .14), (2.15) we get 

again known values 1 1 = ~' 6 = 1.22 (respectively to the elastic case). Substitute 

them to (2.16) for determining s1 

7r2J3 [ 2 2 1 ( 2) 2] 
s1 = -2 ·2 2 + 611 + ~1 + c-2 1 + / 1 . 

/1'l . ':.l 
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If s1 ~ cs, the obtained result r~P = )s¢(s1) is an elastic solution. It is already an 

exact solution. · 

If s1 > cs we remove to the Hf1<·ond iteration. A procedure of the iterative method 
for solving (2.14) + (2.16) can be writ.ten as following 

(
Et(Sn-1) _ l) 2 

c2 = (1 2)[1 Ec(sn_i) 'Yn-1]1/2 
~n + fn + ( 2 ) 2 ' 

1 +rn-1 
(2.17) 

2 + e~ - 61~ + 1 +21~ (1 - 31~) + ( Et(Sn-l) - 1) ( 1 - 1~-l) = 0, 
en Ec(Sn-1) . en-1 

.(2.18) 

7r
2-/3 [ 2 2 1 (. 2)2 (Et(Bn-1) . ) ( 1~-1 )] 

Sn = 21ni2 2 + 6/n + ~n + e~ 1 + fn + Ec(Sn-1) - 1 1 + e~-1 (2.19) 

and the critical force is determined by 

(n) - 1 ,/..( ) 
'T cr - y13'f' Sn . (2.20) 

All values /n-1, en-li Sn-1 are considered t.o be known at. (n - 1)-th iteration, from 
(2.17), (2.18) /n, ~n are evaluated ai;id then sn, TJ;:) - from (2 .19), (2.20). Denoting 

( 
Et ( Sn- 1) ) 2 

[ 
Ec(Sn- 1) -1 fn-1]1 /2 

an-1 = 1 + 2 ' 

(1 + '~-1) 
f3n-l = (Et(Sn-1) _ l) (l _ r;-1)' 

Ec(sn-1) en-1 

bn-l = (Et(Sn-1) - l) (l + r;-1 ), 
Ec(Sn-1) ~n- 1 

from (2.17) + (2.20) by means of some straightforward operations the system of 
equations for n-t.h iteration is obtained 

1 
2 + an-1 + -- + f3n-l 

2 an-1 fn = ----3=-----~ 
6+-- -an-1 

an-1 
~~ = an-1(1 +I~), 

7!"2-13[ . 2 2 1( 2)2 s: ] Sn = -
2 

.2 2 + 6/n + ~n + t 2 1 + fn + Un-1 , 
/ni ~n 

(n) - __.!._,;..( ) 
Tcr - y13 'f' Sn · 
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(2.24) 



The solving procedure consists of the following steps: firstly "in is determined from 
(2.21) , this value is then substituted into (2.21) , from where ~n is obtained., further 

by putting just results /n, ~n into (2 .23) we get Sn and then from (2.24) - TJ;l 
Practically, the iterative process will be finished when 

I 
Sn - Sn- 1.1 < E, 

Sn- 1 

where E is a given forward small value. 

3. Elastoplasic stability problem of a plate of comparable sides 

Let's consider a plate of comparable sides a and b, subjected to shear forces and 
simply supported on its edges. When the instability occurs, the bending form of 
the plate depends much more on the ratio of its sides. Because of the difficulty 
to predict the real bending form, then by,; using the Ritz method an approximate 
solution is chosen 

00 00 

"'""" "'""" . m 7r x . n 7r y 
w = L Lamn sm-a- sm -b- (3.1) 

m=l n=l 

The bending energy is evaluated by the formula (2.5) 

- 7r4abAh3 2 [(m2 n2)2 m2n2 (p - )] 
U - 72 LL amn a2 + b2 + a2b2 A 1 . (3.2) 

m n 

For calculating the work of shear forces by (2.6), it needs to involve such integral 

fa i7rx m7rx · { 
2

a i with i + m-odd number, 
sin-cos--dx = 7r i 2 - m 2 

a a O with i + m-even number, 
0 

finally we obtain 

(3.3) 

The expression (3.3) contains only terms with m + i, n + j taking odd numbers. 

The minimum condition of the total energy 

83 o(U-L) 
Oamn Oamn 
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gives us 

7r
2
abAh

3 
a [(m

2 
n2 ) 2 m 2n.2 (p _ )] 

36 mn a2 + b2 + a2b2 A 1 (3.4) 

~~ mniJ . 
- 8Th ~ ~ aij ( .2 2) ( .2 2) = 0 (m + i , 

. . i - m J - n 
i J 

n + j- odd numbers) . 

Solut ion to t his system of equations is very complicated, t hen on the first approxi­
mation we choose 

The system (3.4) reduces to 

m , n , i,j = {
1

' 
2, 

1, 2, 2 

2, 1, 1. 

1f
4
abAh

3 
[ ( 1 1 )2 1 (p )] 

32 a2 + b2 + a2b2 A - 1 an - 4Tha22 = 0, 

7r
4
abAh

3 
[( 1 1 )2 1 (P ) .] 4Than - - + - + -- - - 1 a22 = 0 

2 a2 b2 a2b2 A · 

Since an, a22 are not vanished , then the determinant of this system must be equal 
to zero, from that we have 

(3.5) 

a 
where a = b - the ratio of plate sides. 

In the case of an elastic plate A= P = 3G, from (3 .5) we receive the well-known 
value of critical forces [3] 

b2 
where i 2 = 9-. 

h2 

(e) _ 37r4Gh2 ( 2) 2 _ 277r
4
G(l + a 2

)
2 

T er - 32a3b2 l + O'. - 32a 3i 2 ' 
(3.6) 

In the elastoplastic plate, by putting A= cru = J3T = Ec(s) , P(s) = q/(s) = 
s s 

Et(s), the relation (3.5) can be rewritten in the form 

9J3 7r4 [(1 + a 2)
2 + a 2 (~ - 1) J 

s = (3.7) 

The equation (3.7) for finding Ser is a nonlinear equation with respect to s, to which 
the modified elastic solution method is applied. · 
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On the first iteration we take Et(s) = Ec(s) = 3G, then 

gJ3 7!"4 (1 + a2)2 
s<1) = ---"-":-~--=--

cs 32a3i2 

Ifs~) ~ cs, the iteration process is finished, we have an elastic solution. Ifs~) > cs 
we remove to the second iteration. The iterative procedure must be continued as 
following 

where n-number of iteration. Substituting obtained st) into 

'T (n) = _1 ,./,(s(n)) 
. er J3'+' er 

we get the value of critical shear forces. 

4. Numerical examples and discussion 

(3.8) 

a. A numerical analysis is considered on the long plate made of steel 30XrCA 
and subjected to shear forces . The steel 30XrCA is a hardening material with an 
elastic modulus 3G = 2.6 · 105 MPa, an yield point CJs = 400 MPa, a stress versus 

. b 
strain curve ¢(s) given by a table. The ratio i = 3h varies from 120 to 300. 

The problem is solved by the iterative method described by the system of equa­
tions (2.21) -;- (2.24). Obtained results on the first, second and third iterations are 
shown on the table 1. The elastic and elastoplastic solutions with respect to the 
critical forces are denoted by the numbers 1 and 2 on the Fig. 2. 

The distance between the node lines f. and the slope I can be taken for the elastic 
case f = 1.226, I = 0.709 and for the elastoplastic case € ~ 1.13b, / ~ 0.64. That 
means in the elastoplastic case the distance between the node lines is more narrow 
then one in the elastic case, while the sloping angle is about 57° in comparison with 
54 ° in the elastic case. The bending form of a plate is shown on Fig. 1. 

b. Consider another example for a plate made of steel 30XrCA with the ratio 
a 1 b 

of its sides a = b = 2. The stiffness of the plate i = 3h varies from 270 to 600. 

Numerical results by solving (3.8) are represented on the table 2 and the elastic and 
elasto-plastic solutions with respect to the critical forces are denoted by the numbers 
3 and 4 on the Fig. 2. 

From obtained results of two considered problems it can be seen that the elastic 
and elastoplastic solutions are much closer to each other in the cases with greater 

b 
ratio 3-,;, and highly differ from each other in the cases with smaller one. Obviously, 
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Table 1 

(e) (1) (2) (3) 
'/, 

Tcr 
81 

Tcr 6 Tcr 
~3 

Tcr 

MP a MP a /2 82 
MP a 

/3 83 
MPa. 

120 1004 0.006 306 0.64 1.127 0.0057 305 0.6398 1.131 0.0057 305 
150 642 0.0043 291 0.6394 1.1266 0.0036 286 0.6399 1.132 0.0036 286 

180 446 0.003 276 0,6387 1.1257 0.0025 269 0.6407 1.1329 0.0025 269 

210 327 0.0021 260 0.644 1.1339 0.0019 254 0.65 1.14 0.0019 254 

240 251 0.0016 242 0.6675 1.1675 0.00153 237 0.6748 1.172 0.00151 235 

270 198 0.0013 195 0.709 1.22 data coincide with elastic solution 

300 160 0.0010 158 0.709 1.22 data coincide with elastic solution 

Table 2 

(e) (1) (2) (3) 
'/, 

Tcr 
81 

Tcr 
82 

Tcr 
83 

Tcr 

MP a MP a MP a MP a 

270 1219 0.0080 318 0.0070 312 0.0070 312 

300 987 0.0062 307 0,0058 303 0.00575 303 

350 725 0.0048 295 0.0042 291 0.0042 291 

400 555 0.0036 284 0.0032 278 0.0032 278 

450 438 0.0029 276 0.0025 268 0.0025 268 

500 355 0.0023 262 0.0020 256 0.0020 256 

600 246 0.0016 236 0.0015 231 0.0015 231 
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for plates with the same stiffn:ess the i:qstability happens in a long plate earlier 
then in a plate of comparable sides. The iterative process can be finished on the 
third iteration with a very high accuracy. These results also can talk about the 
convergence of the modified elastic solution method. Further, this method can 
be applied to considering elastoplastic stability problems of plates under complex 
loading. 

This paper is completed with financial support from the National Basic Research 
Program in Natural Sciences. 
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VE sv ON DlNH DAN DEO CUA BAN DUOI TAC Dl)NG CUALTJC TRUQT 
c6 TiNH DEN DANG voNG THVC cuA B.AN 

81~ dl.mg ly thuyet qua trlnh dan deo va phucmg phap bien the nghi$m dan deo 
de khao sat bai toan 6n <'4nh ngoai gi&i h~n dan hoi dia ban du&i tac dvng dia h.rc 
tnrqt c6 tinh den d~ng vong th1.rc .d1a n6 sau khi mat on c4nh. Da nh~n duqc bieu 
th1rc xac c4nh h.rc t&i h~n. Da thl_rc hi$n cac tinh toan bKng so v&i d9 manh thay 
doi, qua d6 kh~ng c4nh sv h9i tl_l dia phuang phap bien the nghi$m dan hoi. 
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