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Abstract. This paper presents an analytical approach to investigate the nonlinear axisym-
metric response of moderately thick FGM sandwich shallow spherical shells resting on
elastic foundations, exposed to thermal environments and subjected to uniform external
pressure. Material properties are assumed to be temperature independent, and effective
properties of FGM layer are graded in the thickness direction according to a simple power
law distribution in terms of the volume fractions of the constituents. Formulations are
based on first order shear deformation shell theory taking geometrical nonlinearity, ini-
tial geometrical imperfection, Pasternak type elastic foundations and varying degree of
tangential constraint of boundary edge into consideration. Approximate solutions are as-
sumed to satisfy clamped boundary condition and Galerkin method is applied to derive
closed-form expressions of critical buckling loads and nonlinear load-deflection relation.
Effects of geometrical parameters, thickness of face sheets, foundation stiffness, imper-
fection, thermal environments and degree of tangential edge constraints on the nonlinear
stability of FGM sandwich shallow spherical shells are analyzed and discussed.

Keywords: Functionally graded material, shallow spherical shell, sandwich shell, nonlinear
stability, tangential edge constraint.

1. INTRODUCTION

Structural elements in the form of spherical shells are widely used in many engi-
neering structures. Since these shells are usually exposed to complex loading conditions,
their static and dynamic responses are important problems and received considerable at-
tention. Static and dynamic responses of isotropic spherical shells have been investigated
in works [1–6] using analytical and semi-analytical approaches. Subsequently, axisym-
metric bucking and post-buckling behavior of moderately thick shallow spherical shells
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made of symmetrically laminated composites and subjected to uniform external pres-
sure have been analyzed by Xu [7] utilizing a Fourier-Bessel series solution and by Nath
and Sandeep [8] using an iterative Chebyshev series solution technique. Also, Muc [9]
made use of trigonometric series method to consider unsymmetrical buckling and post-
buckling behavior of laminated shallow spherical shells subjected to external pressure.

The appearance of functionally graded materials (FGMs) necessitates more studies
on static and dynamic responses of shallow spherical shells made of these novel materi-
als. Shahsiah and his co-workers [10, 11] used an analytical method on the basis of adja-
cent equilibrium criterion to investigate linear asymmetric buckling of simply supported
FGM shallow and deep spherical shells under thermal loads. Based on an alternative ap-
proach, Bich and Tung [12] investigated the nonlinear axisymmetric response of clamped
thin FGM shallow spherical shells under uniform external pressure taking the effects of
pre-existent thermal loads and initial imperfection into consideration. They made use of
the classical shell theory to establish equilibrium and compatibility equations in terms
of deflection and stress functions and these equations are solved by applying Galerkin
method. This work is then extended by Boroujerdy and Eslami [13] for piezo-FGM shal-
low spherical shells, and by Duc et al. [14] for FGM shallow spherical shells on elastic
foundations. Basing on an analytical method, nonlinear unsymmetrical static and dy-
namic buckling behavior of FGM shallow spherical shells have been analyzed by Bich et
al. [15]. Recently, Tung [16] used equilibrium equations in terms of displacements and
rotation on the basis of the first order shear deformation shell theory to study the non-
linear thermo-mechanical response of FGM shallow spherical shells. Actually, foregoing
works only considered two extreme cases of in-plane boundary conditions as bound-
ary edge is assumed to be unrestrained (movable edge) or fully restrained (immovable
edge). In practical situations, edges of plate and shell may be partially movable only, and
tangential edge constraints have considerable and important effects on the nonlinear sta-
bility and load carrying capacity of plate and shell structures [17]. Recently, Tung [18,19]
considered the effects of tangential edge constraints on the post-buckling of thin FGM
cylindrical panels and shear deformable FGM sandwich plates under thermal and me-
chanical loads. More recently, Tung analyzed separate and simultaneous influences of
elastic foundations and tangential constraints of edges on the nonlinear stability of FGM
shallow spherical shells [20]. Some studies relating to stability of FGM plate and cylin-
drical shells on elastic foundations, buckling of FGM conical panel and postbuckling of
FGM shallow spherical shell panel under nonuniform thermal environment have been
addressed in works [21–24] basing on some approaches.

Motivated by previous works [18–20] and from lack of results for FGM sandwich
spherical shells, this paper presents an analytical approach to investigate the nonlinear
axisymmetric response of shear deformable FGM sandwich shallow spherical shells rest-
ing on elastic foundations, exposed to thermal environments and mechanically loaded
by uniform external pressure. Approximate solutions are assumed to satisfy clamped
boundary condition and Galerkin method is applied to obtain closed-form expressions
of critical buckling loads and load-deflection relation. Numerical illustrations show the
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effects of geometrical parameters, thickness of face sheets, foundation stiffness, geomet-
rical imperfection, thermal environments and degree of tangential edge constraint on the
nonlinear stability of FGM sandwich shallow spherical shells.

2. FGM SANDWICH SHALLOW SPHERICAL SHELL (FGM SSSS)
ON AN ELASTIC FOUNDATION

Consider a Sandwich Shallow Spherical Shell (SSSS) of radius of curvature R, base
radius a, uniform total thickness h and rise of shell H. The shell is clamped at bound-
ary edge, rested on a Pasternak elastic foundation and is defined in a coordinate sys-
tem (ϕ, θ, z) whose origin is located on the middle surface of the shell, ϕ and θ are in
the meridional and circumferential directions, respectively, and z is perpendicular to the
middle surface and points inwards (−h/2 ≤ z ≤ h/2) as shown in Fig. 1.
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Fig. 1. Configuration and coordinate system of a sandwich shallow spherical shell (SSSS)
on an elastic foundation

The SSSS is constructed from two isotropic face sheets (i.e. skins) separated by
a thicker core layer made of FGMs. It is assumed that core layer and face sheets are
perfectly bonded and the thickness of each face sheet is h f . The top skin is isotropic
homogeneous (fully ceramic) and the bottom skin is also isotropic homogeneous (fully
metal), whereas FGM core layer is graded from a ceramic-rich interface to a metal-rich
interface. This type of FGM SSSS is asymmetric about the mid-plane and the volume
fraction of metal phase is expressed as

Vm(z) = 0, z ∈ [h0, h1] , top skin

Vm(z) =
(

z− h1

h2 − h1

)n

, z ∈ [h1, h2] , core layer

Vm(z) = 1, z ∈ [h2, h3] , bottom skin

(1)

Herein h0 = −h
2

, h1 = −h
2
+ h f , h2 =

h
2
− h f , h3 =

h
2

and n ≥ 0 is volume frac-
tion index that defines the gradation of material properties across the thickness direction.
Moreover, the volume fraction of the ceramic constituent is given as Vc(z) = 1−Vm(z).

Effective properties of FGM SSSS such as modulus of elasticity E and coefficient of
thermal expansion α can be determined by the linear rule of mixture as

E(z) = Ec + EmcVm(z),

α(z) = αc + αmcVm(z),
(2)
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where

Emc = Em − Ec, αmc = αm − αc (3)

and Em, αm (Ec, αc) are temperature independent properties of metal (ceramic) constituents.
Poisson’s ratio ν is assumed to be constant in the present study.

3. FORMULATIONS

In the present study, the first order shear deformation shell theory is used for for-
mulation and the FGM SSSS is assumed to be under axisymmetric deformation. Accord-
ing to this theory, displacement components u, v, w in ϕ, θ, z directions, respectively, at a
distance z from the middle surface are represented as [7]

u(r, z) = u(r) + zψ(r), v(r, z) = 0, w(r, z) = w(r), (4)

in which r = R sin ϕ, u is displacement in the meridional direction at the middle surface,
w is the deflection of the shell, and ψ is the rotation of a normal to the middle surface.
Due to shallowness of the shell, it is approximately assumed that cos ϕ = 1, Rdϕ = dr
and R = a2/(2H). The non-zero strain components of the shell are defined as

εr = εr0 + zχr, εθ = εθ0 + zχθ , εrz = ψ + w,r , (5)

where a comma denotes differentiation with respect to the corresponding variable, i.e.
( ),r = d( )/dr, and the strains at the middle surface εr0, εθ0 and curvatures χr, χθ are
related to the displacements and rotation in the form

εr0 = u,r − w/R + w2
,r/2, εθ0 = u/r− w/R, χr = ψ,r, χθ = ψ/r. (6)

Based on Hooke’s law, stress-strain relations for an FGM SSSS including tempera-
ture effects are

σr =
E(z)

1− ν2 [εr + νεθ − (1 + ν)α(z)∆T] ,

σθ =
E(z)

1− ν2 [εθ + νεr − (1 + ν)α(z)∆T] ,

σrz =
E(z)

2 (1 + ν)
εrz,

(7)

where ∆T denotes the change of environment temperature from thermal stress free initial
state. The force and moment resultants are expressed in terms of the stress components
through the thickness as

(Nr, Nθ) =

h/2∫
−h/2

(σr, σθ) dz, (Mr, Mθ) =

h/2∫
−h/2

(σr, σθ) zdz, Qr = KS

h/2∫
−h/2

σrzdz, (8)

where KS is shear correction coefficient.
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Introduction of Eqs. (5) and (7) into Eqs. (8), the force and moment resultants are
rewritten in the form

[Nr, Mr] =
[E1, E2]

1− ν2 (εr0 + νεθ0) +
[E2, E3]

1− ν2 (χr + νχθ)−
[Φ0, Φ1]

1− ν
,

[Nθ , Mθ ] =
[E1, E2]

1− ν2 (εθ0 + νεr0) +
[E2, E3]

1− ν2 (χθ + νχr)−
[Φ0, Φ1]

1− ν
,

Qr =
KSE1

2 (1 + ν)
(ψ + w,r) ,

(9)

where

[Φ0, Φ1] =

h/2∫
−h/2

[1, z] E(z)α(z)∆Tdz, (10)

and

E1 = Ech + Emc

(
h f +

h− 2h f

n + 1

)
,

E2 =
Emc

2

[
hh f − h2

f +
n

(n + 1)(n + 2)
(
h− 2h f

)2
]

,

E3 =
Ech3

12
+Emc

[
1
4

h2h f −
1
2

hh2
f +

1
3

h3
f +

(
h−2h f

)3

n + 1

(
1
4
− 1

n + 2
+

2
(n + 2)(n + 3)

)]
.

(11)

The nonlinear equilibrium equations of the geometrically imperfect FGM SSSS rest-
ing on elastic foundations are [20]

D
(

rψ,rrr + 2ψ,rr −
ψ,r

r
+

ψ

r2

)
+

r
R

∆s f + f,rr
(
w,r + w∗,r

)
+ f,r

(
w,rr + w∗,rr

)
+ r

(
q− q f

)
= 0,

(12a)

D
(

rψ,rr + ψ,r −
ψ

r

)
− KSE1

2 (1 + ν)
r (ψ + w,r) = 0. (12b)

The strain compatibility equation of the geometrically imperfect FGM SSSS is [20]

1
E1

∆2
s f = − 1

R
∆sw−

1
r

w,rw,rr −
1
r

w,rw∗,rr −
1
r

w∗,rw,rr. (13)

These equations (12a), (12b) and (13) are expressed in terms of variable functions
including the deflection w(r), rotation ψ(r) and stress function f (r) defined as

Nr =
f,r

r
, Nθ = f,rr. (14)

In addition, D is flexural rigidity, ∆s is Laplace operator in case of axisymmetry

D =
E1E3 − E2

2
E1 (1− ν2)

, ∆s =
d2

dr2 +
1
r

d
dr

. (15)
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Furthermore, w∗(r) is a known function representing initial geometrical imperfec-
tion, q is uniform external pressure and q f is shell-foundation interaction represented by
Pasternak model as

q f = k1w− k2∆sw, (16)
in which k1 is Winkler foundation modulus and k2 is the shear layer foundation stiffness
of Pasternak model.

The FGM SSSS is assumed to be clamped on the boundary edge and under axisym-
metric deformation. The symmetry condition at the center r = 0 together out-of-plane
and in-plane boundary conditions at r = a are expressed in the form [4, 7, 8]

ψ = 0, Nr = f,r/r is finite at r = 0,
w = 0, ψ = 0, Nr = Nr0 at r = a,

(17)

where Nr0 is fictitious compressive stress due to tangential edge restraint, and Nr0 = 0
for movable clamped edge.

To satisfy boundary conditions (17), approximate mode shapes for the deflection
and rotation are assumed as [1]

(w, w∗) = (W, µh)

(
a2 − r2)2

a4 , ψ = Ψ
r
(
a2 − r2)

a3 , (18)

where W is the amplitude of the deflection, and imperfection function w∗ is assumed to
be in the form of deflection for the sake of simplicity. Also, non-dimensional parameter
µ represents imperfection size and Ψ is a coefficient to be determined.

Substitution of w and w∗ from Eqs. (18) into Eq. (13) and integrating of the resulting
equation, at which constants of integration are determined from finiteness condition at
the center r = 0 and in-plane boundary condition Nr(r = a) = Nr0, yield the stress
function as

f,r =
E1

Ra4

(
a2r3

2
− r5

6
− a4r

3

)
W−E1

a8

(
a4r3−2a2r5

3
+

r7

6
− a6r

2

)
W (W+2µh)+Nr0r. (19)

Subsequently, introduction of Eqs. (18) into Eq. (12b) and applying Galerkin method
for the resulting equation

a∫
0

L1 ×
r
(
a2 − r2)

a3 dr = 0, (20a)

where L1 is the resulting expression received after substituting w and ψ from Eqs. (18)
into the left-hand side of Eq. (12b). Implementing integration in the Eq. (20a) gives the
coefficient Ψ as

Ψ =
4KSE1a

32 (1 + ν) D + KSE1a2 W. (20b)

Now, introduction of Eqs. (18) and (19) into the equilibrium equation (12a) and
applying Galerkin method for obtained equation

a∫
0

L2 ×
(
a2 − r2)2

a4 dr = 0, (21a)
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where L2 is the resulting expression received after substituting w, w∗ and ψ from Eqs. (18)
into the left-hand side of Eq. (12a). Performing integration in the Eq. (21a) yields the
following relation

q =

[
64DE1KS

R2
aR2

h

(
32(1 + ν)D + E1KSR2

aR2
h

) + 3E1

7R2
h
+

D
7R4

aR4
h

(
16
3

K1 + 40K2

)]
W

− 976E1

693R2
aR3

h
W
(
W + µ

)
− 409E1

693R2
aR3

h
W
(
W + 2µ

)
+

848E1

429R4
aR4

h
W
(
W + µ

) (
W + 2µ

)
+

[
40

7R2
aR2

h

(
W + µ

)
− 2

Rh

]
Nr0,

(21b)

where
D = D/h3, E1 = E1/h, E2 = E2/h2, W = W/h, Nr0 = Nr0/h,

Ra = a/R, Rh = R/h, K1 = k1a4/D, K2 = k2a2/D.
(22)

If the transverse shear deformation and foundation interaction are neglected, the
expression (21b) leads to result which is similar to relation obtained in the work [12] for
thin FGM shallow spherical shell without elastic foundation.

In the present study, the boundary edge of the shell is assumed to be clamped and
with varying degrees of tangential restraint. The average end-shortening displacement
∆r at the boundary edge r = a is related to the corresponding compressive edge load
Nr0 by

∆rc = Nr0 , (23)
where c is the average tangential stiffness in the meridional direction.

Eq. (23) indicates that value of ∆r = 0, enforced by selecting c→ ∞, corresponds to
immovable edge, whereas condition of movable edge corresponds to c = 0 and Nr0 = 0.
Also, intermediate degrees of in-plane edge constraint correspond to values of c such that
0 < c < ∞. The expression for the average end-shortening displacement is given by

∆r = −
1

2πa2

2π∫
0

a∫
0

u,rrdrdθ. (24)

By virtue of Eqs. (6), (9) and (14), one can obtain the following relation for imperfect
FGM SSSS

u,r =
1
E1

(
f,r

r
− ν f,rr

)
− E2

E1
ψ,r −

1
2

w2
,r − w,rw∗,r +

w
R
+

Φ0

E1
. (25)

Introduction of Eqs. (18), (19) into Eq. (25) and then substituting the resulting
expression into Eq. (24) yield the following relation of the average end-shortening dis-
placement

∆r =

[
5ν− 7

72R
− KSE2

32(1 + ν)D + KSE1a2

]
W

+
35− 13ν

144a2 W (W + 2µh)− (1− ν)

2E1
Nr0 −

Φ0

2E1
.

(26)
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In this study, thermal load is considered for case of uniform temperature rise and
temperature change ∆T is independent of thickness variable. From Eq. (10), thermal
parameter Φ0 can be expressed as

Φ0 = P∆Th, (27)

where

P = Ecαc + (Ecαmc + Emcαc)

(
1− 2h f

n + 1
+ h f

)
+ Emcαmc

(
1− 2h f

2n + 1
+ h f

)
. (28)

Herein, h f = h f /h is face sheet thickness to total thickness ratio.
The combination of Eqs. (23), (26) and (27) gives the fictitious compressive force re-

sultant on tangentially restrained edge Nr0. Next, substituting the expression of Nr0 into
Eq. (21b) leads to the following explicit expression of nonlinear load-deflection relation

q = A1W − A2W
(
W + µ

)
− A3W

(
W + 2µ

)
+ A4W

(
W + µ

) (
W + 2µ

)
+

[
2

Rh
− 40

7R2
aR2

h

(
W + µ

)]
eP∆T,

(29)

where

A1 =
64KSD E1

R2
aR2

h

(
32(1 + ν)D + KSE1R2

aR2
h

) + 4eKSE1E2

32(1 + ν)DRh + KSE1R2
aR3

h

+
3E1

7R2
h
+

(7− 5ν)

18R2
h

eE1 +
D

7R4
aR4

h

(
16
3

K1 + 40K2

)
,

A2 =
976E1

693R2
aR3

h
+

10(7− 5ν)

63R2
aR3

h
eE1 +

80KSeE1E2

7R2
aR2

h

(
32(1 + ν)D + KSE1R2

aR2
h

) ,

A3 =
409E1

693R2
aR3

h
+

(35− 13ν)

36R2
aR3

h
eE1, A4 =

848E1

429R4
aR4

h
+

5(35− 13ν)

63R4
aR4

h
eE1 ,

e =
c

2E1 + c(1− ν)
, c = c/h.

(30)

Specialization of Eq. (29) for case of ∆T = 0 gives pressure-deflection relation in the form

q = B1W − B2W2
+ B3W3

, (31)

where

B1 = A1 − µA2 − 2µA3 + 2µ2A4, B2 = A2 + A3 − 3µA4, B3 = A4. (32)

From Eq. (31), values of deflection at extremum points on the pressure-deflection
curves may be determined from condition dq/dW = 0 yielding

W1,2 =
B2 ∓

√
B2

2 − 3B1B3

3B3
, (33)
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provided
B2

2 − 3B1B3 ≥ 0. (34)

In case of material and geometrical properties of FGM SSSS, foundation stiffness
and degree of in-plane edge constraint make the condition (34) satisfied, the shell expe-
riences an extreme-type buckling behavior which upper and lower buckling pressures
may be predicted as qcr = q(W1) and q(W2), respectively. In contrast, extremum-type
buckling will not occur and pressure-deflection paths are monotonically developed as
B2

2 − 3B1B3 < 0.
Furthermore, Eq. (29) indicates that pressure-loaded FGM SSSS in thermal envi-

ronment can exhibit a bifurcation-type buckling behavior and corresponding bifurcation
point pressure is predicted as

q∆T
b = q

(
W = 0

)
=

2
7R2

aR2
h

(
7R2

aRh − 20µ
)

eP∆T, (35)

which is independent of stiffness of elastic foundation, as ∆T and tangential stiffness c are
not zero-valued. It is interesting from Eq. (29) that for all values of temperature change
∆T, there is existence of an intersection point between load-deflection curves predicted
as
(

W∗ = 7R2
aRh/20− µ, q

(
W∗
))

.

4. RESULTS AND DISCUSSION

There are no results in the literature about the subject of the present study for di-
rect comparison. Therefore, the nonlinear axisymmetric response of an isotropic homo-
geneous shallow spherical shell resting on an elastic foundation and subjected to uniform
external pressure is considered as part of verification of the present approach.

Load-deflection curve of a geometrically perfect, immovable clamped shallow
spherical shell is depicted in Fig. 2 in comparison with results reported by Civalek [6]
using discrete singular convolution and differential quadrature methods. As can be seen,
a good agreement is achieved in this comparison.

To illustrate the proposed approach, this section considers FGM SSSSs composed
of aluminum (Al) and alumina (Al2O3) with the following properties [12]

Em = 70 GPa, αm = 23× 10−6 ◦C−1,

Ec = 380 GPa, αc = 7.4× 10−6 ◦C−1,
(36)

whereas Poisson’s ratio is chosen to be ν = 0.3 for both materials. The shear correction
coefficient is assumed to be KS = 5/6 in calculation. Moreover, to measure the degree
of edge restraint in a convenient way, an alternate tangential stiffness parameter β is
introduced such that β = 0 and β = 1 correspond to movable and immovable boundary
edge r = a, respectively, and partially restrained edge is defined by 0 < β < 1. In the
present study, this alternate tangential stiffness parameter is given by

β =
c

E1 + c
. (37)
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In characterizing the behavior of the FGM SSSSs, deformations in which the central
region of a shell moves toward the center of respective sphere are referred to as (positive)
inward deflections, whereas deformations in the opposite direction referred to as (nega-
tive) outward deflection. Since effects of volume fraction index have been mentioned in
many studies, this section only considers FGM SSSSs with index n = 2.

Fig. 3 considers the effects of h f /h ratio and β parameter on the critical pressures
for (Al2O3/FGM/Al) FGM SSSSs under uniform external pressure only. It is evident that
the critical buckling pressures are reduced as h f /h ratio to be higher. In addition, the
critical loads are enhanced as a/h and H/a ratios are increased and boundary edge is
more rigorously restrained in tangential motion, i.e. higher values of β parameter.
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The effects of h f /h and H/a ratios on the nonlinear response of immovable clamped
FGM SSSSs under uniform external pressure without elastic foundations and thermal en-
vironment are analyzed in Fig. 4. As can be seen, extreme type buckling pressures and
severity of snap-through phenomenon are both increased as H/a ratio become larger (i.e.
deeper shell). Furthermore, the pressure-deflection curves become lower with increase
in h f /h ratio. Next, Fig. 5 considers the effects of varying degree of tangential edge con-
straints (i.e. β parameter) and elastic foundation on the nonlinear response of FGM SSSSs
under uniform external pressure only. Obviously, the increase in value of β, representing
more rigorous constraint of in-plane motion of boundary edge, results in higher buckling
loads and more intense snap-through response. In addition, pressure-deflection curves
are enhanced and snap-through instability become more benign due to the presence of
elastic foundation. Fig. 6 indicates that initial geometrical imperfection has significant
influences on the nonlinear response of FGM SSSSs subjected to external pressure. It
seems that the effective curvature of the spherical shell is changed due to the presence of
initial geometrical imperfection and, as a result, the load carrying capacity of FGM SSSSs
is reduced as µ parameter is increased from −0.1 to 0.1.
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This may be explained that the spherical shell is deflected outward (negative deflection) 

and, as a result, the shell is more curved due to pre-existent thermal stress, especially as 
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The effects of degree of tangential edge constraint and thermal environment on
the nonlinear thermo-mechanical response of FGM SSSSs are analyzed in Fig. 7. It is
evident that, externally pressurized FGM SSSSs exposed to a thermal environment will
exhibit a bifurcation type buckling behavior as boundary edge is tangentially restrained.
Moreover, bifurcation point pressure is enhanced by increase in degree of tangential edge
constraint. This may be explained that the spherical shell is deflected outward (negative
deflection) and, as a result, the shell is more curved due to pre-existent thermal stress,
especially as boundary edge is rigorously restrained. Therefore, external pressure must
reach a bifurcation point value at which the shell surface returns reference state prior
deflecting inward as external pressure exceeds bifurcation point value.
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Subsequently, the effects of thermal environments on the nonlinear thermo-
mechanical response of FGM SSSSs on Pasternak foundations are analyzed in Fig. 8. This
figure indicates that bifurcation point pressures are enhanced as β parameter and/or tem-
perature change ∆T are increased. Furthermore, difference between pressure-deflection
curves in the two cases of β = 0.5 and β = 1.0 is substantially bigger as FGM SSSSs are
exposed to higher temperature fields.
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Snap-through instability and the nonlinear response of pressure-loaded FGM SSSSs in 

thermal environments have been investigated. Formulations are based on the first order 

shear deformation shell theory and closed-form expressions are derived by applying 

Galerkin method. The study reveals that thickness of face sheets, geometrical parameters 

and degree of tangential edge constraint have sensitive effects on the behavior and load 

carrying capacity of FGM SSSSs. The shell has higher critical buckling load and more

severe snap-through intensity as boundary edge is more rigorously restrained in tangential 

motion. The results also indicate that elastic foundations have beneficial influences on the 

load carrying capacity (i.e. higher load-deflection curves) and stabilization (i.e. more benign 

snap-through response) of FGM SSSSs. Furthermore, initial geometrical imperfection 

changes the curvature of spherical shell and has significant effects on the nonlinear stability 

of the shell. As a final remark, buckling pattern of pressure-loaded FGM SSSS is changed 

from extremum type to bifurcation type as environment temperature is elevated and 

Fig. 9. Effects of elastic foundations and
thermal environments on nonlinear thermo-

mechanical response of FGM SSSSs

Finally, Fig. 9 examines the effects of elastic foundations on the thermo-mechanical
response of the FGM SSSSs with different values of environment temperature. It is evi-
dent that load-deflection curves are enhanced and snap-through phenomenon becomes
more benign, i.e. postbuckling response is more stable, when the FGM SSSSs are sup-
ported by Pasternak elastic foundations

5. CONCLUDING REMARKS

Snap-through instability and the nonlinear response of pressure-loaded FGM SSSSs
in thermal environments have been investigated. Formulations are based on the first or-
der shear deformation shell theory and closed-form expressions are derived by applying
Galerkin method. The study reveals that thickness of face sheets, geometrical parame-
ters and degree of tangential edge constraint have sensitive effects on the behavior and
load carrying capacity of the FGM SSSSs. The shell has higher critical buckling load and
more severe snap-through intensity as boundary edge is more rigorously restrained in
tangential motion. The results also indicate that elastic foundations have beneficial influ-
ences on the load carrying capacity (i.e. higher load-deflection curves) and stabilization
(i.e. more benign snap-through response) of the FGM SSSSs. Furthermore, initial geo-
metrical imperfection changes the curvature of spherical shell and has significant effects
on the nonlinear stability of the shell. As a final remark, buckling pattern of pressure-
loaded FGM SSSS is changed from extremum type to bifurcation type as environment
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temperature is elevated and bifurcation point pressure is enhanced with increasing in
temperature change ∆T and/or degree of tangential edge constraint β.
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