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Abstract. In this paper a 2D pollution water model with an improved numerical method
is considered. In order to reduce the approximation errors of the numerical scheme, a
new approximation method is introduced to calculate the concentration flux between two
cells (j-cell and l-cell) in the direction of the normal vector ~n orthogonal to their common
side. The advantage of this approximation is that the concentration flux ∂C/∂~n from j-cell
to l-cell and the other one from l-cell to j-cell are only different by their signs but not by
their absolute values. Therefore, the errors of concentration simulated by this scheme are
reduced and less than those obtained by a normal differential implicit discretization. This
improvement of the scheme will be illustrated by two test cases. In the numerical tests
we will display the difference between the exact solution, the classical scheme and the
proposed scheme. Numerical results demonstrate the improvement of this approach.

Keywords: Water pollution, finite volume method.

1. INTRODUCTION

Water pollution is one of the most serious problems worldwide. A major scientific
challenge is the ability to predict the evolution of an episode of pollution. To achieve this
goal we need to mix several sources of information:

- Models based on equation of conservation;
- Mathematical method to solve the above models;
- Observations in situ or remote measurements;
- Statistics on the fields;
- Images.
Using Variational Data Assimilation will permit to retrieve the state of the flow.

It is clear that the quality of the prediction takes into account the quality of the items
listed above. The purpose of this paper is to present a global example in the case of wa-
ter pollution. We will consider an improved model for water pollution which is used to
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simulate the flow of water and the evolution of a passive contaminant. For this prob-
lem, many numerical methods and models that have been studied and developed such
as WASP, QUAL2K [1] . . . Based on the hydraulic model IMECH 2DUSZ [2,3] a 2D water
pollution model is developed then numerically solved due to a finite volume the direc-
tions of the normal vector common to two elements are different. It leads to a numerical
solution closer to the exact solution than the one obtained by using the former methods.
The improvement of the model is demonstrated on two test cases for which the analytical
solutions are known.

2. DERIVING A 2D WATER POLLUTION MODEL

The used model is a system coupling the hydraulic component and equation of
concentration for the pollutant. The hydraulic model is based on the Saint–Venant equa-
tions in a domain Ω with boundary Γ (see [1, 4])
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where Ω is a bounded domain of R2 with boundary Γ; h = z− zb is the water depth; z is
the free surface elevation; zb is the bottom elevation; u is the velocity in the x-direction;
v is the velocity in the y-direction; g is the gravity acceleration; Kx is the Strickler coeffi-
cient in the x-direction; Ky is the Strickler coefficient in the y-direction. We suppose that
there are some passive substances dissolved in the flow. Then the transport and diffusion
processes of the pollutant are governed by the following equation (see [1–6])

∂C
∂t

+ U~∇C− η∆C = KC + Φ, in Ω. (2)

Here ∆ =

(
∂2

∂x2 +
∂2

∂y2

)
; ~∇ =

(
∂

∂x
,

∂

∂y

)
; C is the concentration of the substance; F is the

source term of the pollutant; h is the diffusion coefficient of the pollutant; U = (u; v) is
the water velocity vector; K is the conversion coefficient. The boundary Γ is defined by
Γ = Γ1 ∪ Γ2∪ Sw. Γ1, Γ2, Sw are, respectively, the outflow, inflow boundaries and solid
wall of the Ω domain. ~n =

(
nx, ny

)
is the unit normal vector to the inflow Γ1 and

outflow Γ2. For a water pollution problem with a slow evolution the boundary condi-
tions are: U (x, y, t)~n = Uin (t) and C (x, y, t) = Cin (t) on Γ1; h (x, y, t) = hin (t) on

Γ2; U (x, y, t)~n = 0,
∂C (x, y, t)

∂~n
= 0 on the solid wall Sw. On Γ2 one of the follow-

ing two boundary conditions is chosen: either ∂C/∂~n = 0 or C = Cout(t). Let X be
(h; u; v)T, with a given initial conditions: X0 = (h(x, y, 0), u(x, y, 0), v(x, y, 0))T, U0 =
(u(x, y, 0), v(x, y, 0))T and C(x, y, t) with C(x, y, 0) = C0(x, y) a solution of the system is
uniquely determined on Ω (see [7]).
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3. NUMERICAL METHOD

To compute a numerical solution of the above equations, a cell centered finite vol-
ume method is carried out (see [8]). The mesh defined on Ω is an unstructured triangu-
lation. We divide Ω, with Np mesh points, into N cells Ωj with respective boundary γj,
(j = 1, . . . , N). A basic cell Ωj is described by left side of Fig. 1 with the index points

(xjk, yjk), center point (xjcyjc) and the unit normal vectors ~nj,ik =
(

nx
j,ik, ny

j,ik

)
to the sides

lj,ik connecting 2 points (xji, yji) and (xjkyjk), (i, k = 1, . . . , 3 with i 6= k). The length of a
side of a triangle is denoted by~lj,ik.

Fig. 1. A cell (left); Normal vectors to a common side between two cells (middle); Exchanging
concentration between 2 cells Ωj and Ωl (right)

The value transfers of some functions h, u, v, C from points to elements are carried
out according to the following scheme for some function w:

- The value of a function w at the center of the cell j and at a point m(m = 1, . . . , Np)

are denoted by w(j,c) and wm. The value of function w at a point m is presented in [3].

wm =
1
M

M

∑
q=1

w(jq,c), (3)

where w(jq,c) (q = 1, . . . , M) are the values of function w at M cells that is connected to the
point m.

- In j-cell we denote wmk the value of function w at the point number mk of coordi-
nates (xjk, yjk) (mk = 1, . . . , Np and k = 1, 2, 3). On this cell the approximations of partial
derivatives ∂w/∂x and ∂w/∂y are introduced in [3].
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(4)

The new approximations of the functions C and
∂C
∂~n

on a common side between 2
elements (see Section 3.1) are introduced for the following reason:
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Denote lj,12 the common side between j-cell and l-cell (see the middle of Fig. 1) and
~nj,12,~nl,12 the normal vectors to lj,12 directed from j-cell to l-cell and from l-cell to j-cell,
respectively would be

∂CΩj

∂~nj,12
=

∂CΩj

∂x
nx

j,12 +
∂CΩj

∂y
ny

j,12 and
∂CΩl

∂~nl,12
=

∂CΩl

∂x
nx

l,12 +
∂CΩl

∂y
ny

l,12 .

Using the discrete formulas (4) for j-cell and l-cell (see the middle of Fig. 1) we

can see that, on the common side lj,12, the values
∣∣∣∣ ∂CΩj

∂~nj,12

∣∣∣∣ and
∣∣∣∣ ∂CΩl

∂~nl,12

∣∣∣∣ may not be equal.

For this reason, in order to reduce approximation errors of simulation process we will

calculate the concentration function C and its flux function
∂C

∂~nj,ik
on the common side lj,ik

with i, k = 1, . . . , 3 and i 6= k by another approximation method that will be described in
Section 3.1. The 2D shallow water equations is solved by using the HLL Riemann Solver
scheme (the approximate Riemann solver proposed by Harten Lax and van Leer in 1983)
(see [9–11]). In this paper we present the improved method solving the concentration
equation.

3.1. Numerical method for solving the concentration equation
To solve the concentration equation (2) we will improve the approximation scheme

in such a way so that the simulation is stable and closer to the exact solutions.
Using a finite volume discretization Ωj (see [3]), integrating (2) by Ωj we obtain the

following approximation

CΩj,t+∆t =
1

1−0.5K∆t

[(
1+

K∆t
2

+~∇UΩj∆t
)

CΩj,t+∆tΦ+
∆t
∆S

3

∑
i,k=1,i 6=k

[
G (Ct)lj,ik

~nj,ikl j,ik

]]
,

(5)
where

G (Ct)lj,ik
~nj,ik = Ûlj,ik Ct

∣∣∣
lj,ik
− η

∂Ct

∂~nj,ik

∣∣∣∣
lj,ik

. (6)

On the common side lj,ik the function Ûlj,ik = U~nj,ik|lj,ik is approximated by (see [9–11])

Ûlj,ik =
1
2

(
UΩj + UΩl

)
~nj,ik +

√
ghΩj −

√
ghΩl (7)

Applying the ideas of Godunov and Roes Riemann Solver methods (see [5, 12, 13])

we estimate the value of G (Ct)lj,ik
~nj,ik on lj,ik. We will simulate the values of C and

∂C
∂~nj,ik

by the direction of
xj,ik ≡ ~nj,ik. (8)

Local coordinates xj,ik are set to position 0 as the contact boundary between j-cell

and l-cell. The exchanged concentration C and
∂C

∂xj,ik
from Ωj to Ωl are described in the
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right side of Fig. 1. To evaluate C and
∂C

∂xj,ik
lj,ik we consider the numerical solution of a

1D Riemann problem for the flux of concentration in the direction of xj,ik (see [5, 12, 13])
∂C
∂t

+ Ûlj,ik

∂C
∂xj,ik

− η
∂2C
∂x2

j,ik
− KC = Φ

lim
xj,ik→±0

C =

{
CΩj, xj,ik < 0
CΩl , xj,ik > 0

(9)

Using the splitting method with respect to time (see [14]), on the time period ∆t,
we solve Eq. (9) with the time variable τ ∈ [0, ∆t] by Eqs. (10), (11)

∂Ĉ
∂τ

+ Ûlj,ik

∂Ĉ
∂xj,ik
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∂2Ĉ
∂x2
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{
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(10)


∂C∗
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= Φ

C∗|τ=0 = Ĉ|τ=∆t

(11)

If ∆t small enough we have (see [14])

C
(
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(
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≈
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∂xj,ik
. (12)

If K = 0 the solution of Eq. (10) (see [15] pp. 618–619) is

Ĉ
(
xj,ik, τ

)
= R

(
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)
, (13)

where

R
(
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)
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2
√
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)
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2
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2
. (14)

If K 6= 0, it is easy to check that: Ĉ
(
xj,ik, τ

)
= eKτR

(
xj,ik, τ

)
is the solution of (10).

The solution of Eq. (11) can be approximated by: C∗(xj,ik, ∆t) = C∗(xj,ik, 0) + Φ∆t.
Using the initial condition C∗(xj,ik, 0) in this formula and thanks to (12)–(13) we get
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(
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Using (7), (8), (16) and the formula of Bj in Eq. (14) it is easy to see that the ex-

changing concentration flux
∂C

∂~nj,ik
from j-cell to l-cell and the other one

∂C
∂~nl,ik

from l-cell

to j-cell have the same absolute values but not the same sign.
To get more exact value of the function G (C)~nj,ik (see (6)) we divide the value of

time step ∆t by m (in our model m = 10). Then, using the formulas (15), (16) we get the
approximation formula of G (C)~nj,ik as follows

G (C)~nj,ik ≈
1
m

m

∑
r=1

eK r
m ∆t


Ûl,ik Aj − BjÛl,iker f c

−Ûl,ik

√
r∆t
m

2
√

η


−Bj

e
−Û2

lj,ik
r∆t
m

4η√
r∆t
m

√
η

π
+

1
m

m

∑
r=1

Ûl,ikΦ
r∆t
m


. (17)

Applying the approximation of G (Ct)~nj,ik given by (17) into the formula (5) the
value CΩj,t+∆t is obtained. To get the good result of the concentration C, the time step ∆t
needs to satisfy the Courant–Friedrichs–Lewy (CFL) condition.

3.2. Improved approximation schema (IAS) for the estimation of X = (h, u, v)T and C
The discrete schema calculating X and C can be briefly written by the follow-

ing steps:
(i) The starting values of X and C are given at Np mesh points;
(ii) Calculate the values of X and C in N cells by the same ways as in [3];
(iii) The values of X = (h, u, v)T and C in N cells are called by the values of the

previous step;
(iv) Calculate X = (h; u; v)T by the schema in [11];
(v) On the cell boundaries γj(j = 1, . . . , N), the function G (Ct)lj,ik

~nj,ik involved in
(5) is calculated by (17);

(vi) Calculate the function C for the current step by (5);
(vii) Using the obtained values of X = (h, u, v)T and C in current step at N cell

centers calculate X, C in Np mesh points by the same ways as [3];
(viii) For the next step go to (iii).

4. NUMERICAL TEST CASES FOR POLLUTION TRANSMISSION MODEL

To test the numerical algorithm for a 2D pollution model, we will consider 2 test
cases using data displayed in Tabs. 1 and 2. In these test cases, we consider the problems
of water flows with constant velocity U = (u, 0) in a channel with length L and width
W. We denote the gate-in of the channel by Γ1, the gate-out is Γ2 and the solid is Sw. The
boundary conditions on Γ are

C = Cin on Γ1
C = Cin on Γ1 for the fist and the second test cases
∂C
∂n

= 0 on Sw for the second test cases
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The initial condition is C(x, y, 0) = C. In the first test case, we will test 1D model
for concentration and then suppose that there is a dissolvable substance distributed in
the channel only in the direction of x. The 2D model for concentration is tested by the
second test case.

Table 1. Data of the channel

Pr. W (m) L (m) K u (m/s) η Cin (mg/l) C0 (mg/l) Time step (s)

1 200 10000 0 0.5 30 Formula (19) Formula (18) 1

2 2000 5000 −0.0001 1 10 Formula (25) Formula (24) 1

Table 2. Data of the channel

Pr. Γ1 Γ2 Cout (mg/l) ∂C
∂n on Γ2

1 x = −5000, y ∈ [0, 200] x = 5000, y ∈ [0, 200] Formula (20) -

2 x = 0, y ∈ [−1000, 1000] x = 5000, y ∈ [−1000, 1000] Formula (26) -

4.1. The first test case
For this test case we suppose that−L/2 ≤ x ≤ L/2 and the concentration function

C is only depending on x and t. In the initial moment the concentration C(x, 0) has a
discontinuity at x = 0 (see [15]) such that

C (x, 0) = C0 =



C2 if x ∈
[
−L

2
, 0
]

C1 if x ∈
[

0,
L
2

]
C2 when x → −0
C1 when x → +0

(18)

The values of C1 and C2 are: C2 = 30 mg/l, C1 = 10 mg/l. The boundary condi-
tions on the gate-in Γ1 and the gate-out Γ2 are given by

Cin(t) = A1 − A2erfc
(
−L/2− ut

2
√

ηt

)
, (19)

Cout(t) = A1 − A2erfc
(

L/2− ut
2
√

ηt

)
, (20)

with A1 =
C2 + C1

2
and A2 =

C2 − C1

2
. The equation and boundary and initial conditions

of the first test are
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
∂C
∂t

+ u
∂C
∂x
− η

∂2C
∂x2 = 0 in Ω

C = Cin (t) on Γ1 (see formula (19))
C = Cout (t) on Γ2 (see formula (20))
C (x, 0) = C0 (t) (see formula (18))

(21)

The exact solution of Eqs. (21) is (see [15] pp. 618–619): C1 (x, t) = A1− A2erfc
(

x− ut
2
√

ηt

)
.

Comparing the exact solution with the solutions obtained by the normal differential im-
plicit schema (NDIS) (see [3]) and the IAS in the item 3.2 gives that the simulation solution
is closer to the exact solution (see Fig. 2).

Fig. 2. The first test case of Section 4: Error percentage for simulated and exact solutions by the
improved approximation schema and by the normal differential implicit schema (left); Mean ab-

solute errors of concentration in percentage of mean concentration (right)

At time 5400 s, the comparison of error percentages between the simulated solu-
tions, using the IAS then by the NDIS and the exact solution (see [3]) is displayed in the
left side of Fig. 2. The mean error percentages of concentration simulations by time pe-
riod of the two schemes are shown in the right side of Fig. 2. On this figure we see that
the mean concentration error of the model using the IAS is better than the one obtained
by the NDIS and less than 0.125%.

4.2. The second test case
The concentration of pollutant for this test case verifies

∂C
∂t

+ u
∂C
∂x
− η

(
∂2C
∂x2 +

∂2C
∂y2

)
= KC, in Ω. (22)

The exact solution of this equation is (see [16, 17])

C2 (x, y, t) =
M

4πηt
e−

(x−ut)2+y2
4ηt +Kt, (23)
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where M is a constant. In this case, the values of the initial moment t0 and M are: t0 =
1000 s and M = 103 mg/l. The initial condition of the concentration is given by

C0 (x, y) =
M

4πηt0
e−

(x−ut0)
2
+y2

4ηt0
+Kt0 . (24)

The concentration boundary conditions on the gate in Γ1 and the gate out Γ2 are
given by the formulas (25) and (26), respectively,

C (x, y, t)|Γ1
= C (0, y, t) =

M
4πη (t0 + t)

e
− u2(t+t0)

2
+y2

4η(t0+t)
+K(t0+t)

, (25)

C (x, y, t)|Γ2
= C (L, y, t) =

M
4πη (t0 + t)

e
− (L−u(t+t0))

2
+y2

4η(t0+t)
+K(t0+t)

. (26)

Data for this test case are shown in Tabs. 1 and 2. For the second test case we have the
following governing equations

∂C
∂t

+ u
∂C
∂x
− η

(
∂2C
∂x2 +

∂2C
∂y2

)
= KC in Ω

C = Cin on Γ1 (see formula (25))
C = Cout on Γ2 (see formula (26))
∂C
∂n

= 0 on Sw

C (x, y, 0) = C0 (x,y) (see formula (24))

(27)

Fig. 3. The second test case of Section 4: Error percents of simulations and exact solution
by improved approximation schema and by the normal differential implicit schema

in the middle of the channel (y = 0) (left); Mean absolute errors of concentration
in percentage of mean concentration (right)

At time 3000 s the left side of Fig. 3 describes the comparison of error percentage
between simulated concentration C(x, y, t) of (27) and the exact solution C2(x, y, t + t0)
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of (23) by the IAS and by the NDIS (see [3]), respectively. The mean absolute error per-
centage of concentration of the two schemes are shown in the right side of Fig. 3. On this
figure we see that the error percentage of the model is smaller than the one we get by
using NDIS and less than 1.8%.

The mean absolute errors of 2 test cases are presented in the right sides of Figs. 2,
3 and less than 1.8%. The results obtained in the in 2 test cases show that the simulation
results of this model using the IAS are closer to the exact solutions than what we get
using the NDIS and furthermore the numerical solutions are stable.

5. CONCLUSIONS

The numerical model solving 2D pollution water model is used with HLL Riemann
solver schema for solving water velocity (see [11]) and improved by the new concentra-
tion approximation schema when we solve the pollution equation. The model is tested
with 2 cases. The following results are obtained:

- Two concentration test cases are studied with the new improved concentration
approximation schema. The first test case is considered by the pollution transmission
problem of a dissolvable substance distributed in the channel only by x-direction. In this
test case with discontinuity at x = 0 the solution has a fast evolution.

- The second test case is tested for 2D pollution problem. The results show that the
model is working well with the parameters of concentration equation changing in large
intervals. The percent errors between the exact solutions and the simulations using the
new approximation schema are less than the one using the normal differential implicit
schema. It shows the advantage of the improved concentration approximation.

These results demonstrate that the presented algorithm is an improved tool for
concentration calculations, in the case of 2D water pollution problems.
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