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Abstract. In part 1, the governing nonlinear dynamic equations of FGM sandwich dou-
bly curved shallow shells reinforced by FGM stiffeners on elastic foundation subjected to
mechanical and thermal loading are established based on the first order shear deforma-
tion theory (FSDT) with von Kármán - type nonlinearity and smeared stiffener technique.
In the present part, the fourth-order Runge–Kutta method is applied to investigate influ-
ences of models of the shells, FGM stiffeners, thermal environment, elastic foundation,
and geometrical parameters on the natural frequencies and dynamic nonlinear responses
of stiffened FGM sandwich doubly curved shallow shells.
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1. INTRODUCTION

Analytical expressions for determining natural frequencies, nonlinear frequency-
amplitude relation, and time-deflection curves of stiffened FGM sandwich doubly curved
shallow shells are obtained in Part 1 of the paper [1]. In the present part, influences of
FGM stiffeners, models of the shells, thermal environment, foundation, and geometrical
parameters on dynamic nonlinear responses of sandwich shells are numerically investi-
gated.

Many different methods were applied to investigate nonlinear dynamic response
of FGM plates and shells. By using finite element method Parandvar and Farid [2] stud-
ied vibration of FGM plate in thermal environment subjected to simultaneously static
pressure and harmonic force. Pandey and Pradyumna [3] presented Newmark average
acceleration method to consider vibration of FGM sandwich plates and shell panels sub-
jected to rapid heating. Wang and Shen [4] and Bich et al. [5, 6] employed Runge–Kutta
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method to investigate nonlinear dynamic response of plate and stiffened doubly curved
thin shallow shells.

The equations in Part 1 are used to calculate natural frequencies and to plot
frequency-amplitude curves and dynamic response curves respectively as follow: Eqs.
(26), (28); Eq. (30) and Eqs. (23)–(25) for FGM sandwich shallow shell subjected to me-
chanical loads and Eqs. (35), (37); Eq. (38) and Eqs. (32)–(34) for FGM sandwich shallow
shell subjected to combined mechanical and thermal loads. These equations and equation
systems are solved by the fourth-order Runge–Kutta method. Numerical results show ef-
fects of FGM stiffeners, models of the sandwich shells, thermal environment, foundation,
and geometrical parameters on dynamic nonlinear responses of sandwich shells. In ad-
dition, the comparison results between the classical shell theory (CST) and the first-order
shear deformation theory (FSDT) are considered. It is noted that for Rx = Ry, it corre-
sponds to the spherical panel (S-panel); for Rx → ∞, it corresponds to the cylindrical
panel (C-panel); for Rx = −Ry, it corresponds to the hyperbolic paraboloidal panel (H-
panel) and for Rx → ∞, Ry → ∞ it corresponds to the plate.

2. NUMERICAL RESULTS AND DISCUSSIONS

2.1. Comparison studies
In order to verify the analytical formulation presented in the previous part, firstly,

the natural frequencies of un-stiffened FGM square sandwich plate with model 1B are
compared with those of [7] based on the sinusoidal shear deformation plate theories. The
input data is Em = 70 GPa, ρm = 2707 kg/m3; Ec = 380 GPa, ρc = 3800 kg/m3; ν = 0.3,
Ks = 5/6, ht = hb = h/3, a/h = 10. From the result listed in Tab. 1, it is observed that
the compared results are in good agreement.

Table 1. Comparison of fundamental frequency ω̄ = ωa2/h
√

ρ0/E0 (E0 = 1 Gpa and
ρ0 = 1 kg/m3) of un-stiffened FGM square sandwich plate ((m, n) = (1, 1))

Theory k = 0 k = 0.5 k = 1 k = 5 k = 10
CLPT [7] 1.87359 1.54903 1.37521 1.05565 1.00524

FSDPT [7] 1.82442 1.51695 1.35072 1.04183 0.99256
TSDPT [7] 1.82445 1.51922 1.35333 1.04466 0.99551
SSDPT [7] 1.82452 1.51927 1.35339 1.04481 0.99519

FSDT[Present] 1.82617 1.51713 1.35044 1.04138 0.99218

CLPT: the classical plate theory, FSDPT: the first-order shear deformation plate theory, TSDPT:
the third-order shear deformation plate theory, SSDPT: the sinusoidal shear deformation theory.

Next, we have a comparison between the natural frequency of the FGM spherical
panel reinforced (model 2A with ht = hb = 0 m) by homogenous stiffeners without
elastic foundation obtained in [1], and the results were calculated by Eq. (32) of [6] based
on the CST. The shell is considered with the following characteristics: a = b = 1 m,
Rx = Ry = 5 m, hx = hy = 0.01 m, ν = 0.3, dx = dy = 0.003 m, sx = sy = 0.1 m, Em = 70
GPa, ρm = 2707 kg/m3, Ec = 380 GPa, ρc = 3800 kg/m3 and (m, n) = (1, 1).
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Table 2. Comparison of fundamental frequency of FGM spherical panel reinforced
by homogenous stiffeners

a/h k CPT [6] FSDT [Present] Difference (%)

0.2 1817.10 1814.37 0.15

200 1 1575.89 1573.70 0.14

5 1225.26 1222.93 0.19

0.2 1926.99 1916.17 0.56

100 1 1669.87 1661.47 0.50

5 1309.15 1301.09 0.62

0.2 2174.77 2134.71 1.84

50 1 1868.41 1837.10 1.68

5 1493.08 1463.84 1.96

0.2 3350.90 3176.43 5.21

20 1 2809.96 2670.88 4.95

5 2345.56 2219.95 5.36

0.2 5854.05 5397.34 7.80

10 1 4845.91 4483.50 7.48

5 4134.36 3804.81 7.97

0.2 11243.72 9855.91 12.34

5 1 9263.49 8200.99 11.47

5 7965.25 6943.13 12.83

As seen in Tab. 2, for thin shell (a/h ≥ 50), we obtain a good agreement. How-
ever, for thicker shells (5 ≤ a/h < 50) the difference between two theories is consider-
able. Therefore, the FSDT may be necessary to obtain reasonably accurate solutions for a
thicker shell.

2.2. Numerical results for FGM sandwich shallow shells
In this section, we consider perfect and imperfect FGM sandwich doubly curved

shallow shells reinforced by FGM stiffeners on elastic foundation. The geometric and
material properties of shell and stiffeners are a = b = 1 m, a/h = 30, ht = hb, Rx =
Ry = 5 m, kt = kb = k; hx = hy, dx = dy, sx = sy = 0.1 m, k2 = k3 = 1/k and
K1 = 5 × 107 N/m3, K2 = 2 × 105 N/m (unless otherwise). The shear correction co-
efficient is chosen to be Ks = 5/6. The shells are composed from mixture of silicon
nitride (Si3N4) and stainless steel (SUS304) according to the sigmoid or power distribu-
tion laws. In the FGM layers, effective value of material properties Pr, such as Young’s
modulus E, thermal expansion coefficient α and the mass density ρ can be expressed
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as [8] Pr = P0
(

P−1T−1 + 1 + P1T + P2T2 + P3T3), where T = T0 + ∆T and T0 = 300 K
(room temperature), P0, P−1, P1, P2, P3 are the coefficients in which typical values (includ-
ing Young’s modulus E, thermal expansion coefficient α and mass density ρ) are adopted
as in Reddy and Chin [9]. Poisson’s ratio is assumed to be a constant and ν = 0.29.

2.2.1. Natural frequencies
A comparison between the natural frequencies of the shell calculated by the ap-

proximate Eq. (28) (assuming that Φ̈x, Φ̈y are ignored) and by the full Eq. (26) is shown
in Tab. 3. It can see that there is a small difference between the natural frequencies cal-
culated by these equations. Therefore, in order to simplify, Φ̈x and Φ̈y will be ignored in
the remainder of numerical examples.

Table 3. Comparisons of the natural frequencies of S-panel calculated by Eq. (26) and Eq. (28)
(ht/h = 0.3, kt = 1, hx = 0.03 m, dx = 0.006 m)

Modeling Using Eqs. (26) Using Eqs. (28) Difference (%)
1A 1783.60 1780.89 0.15
1B 2251.11 2246.45 0.20
2A 1987.56 1985.12 0.12
2B 1957.51 1953.59 0.2

Tab. 4 shows that the natural frequency of the FGM sandwich shell with model 2A
is larger than natural frequency of normal FGM shell with the same thickness. Besides,
the elastic foundations also have influences on the natural frequency of the shell. Specifi-
cally, natural frequency of the shell on Pasternak elastic foundation is the largest and that
of the shell without elastic foundation is the smallest. From the results in this table we
can also see that the temperature considerably decrease natural frequency of the shell.

Table 4. Comparisons of natural frequencies of FGM shells and FGM sandwich shells with model
2A (ht/h = 1/3, kt = 1, hx = 0.02 m, dx = 0.006m)

∆T(K)
Pasternak foundation Winkler foundation Without foundation

FGM
FGM

FGM
FGM

FGM
FGM

sandwich sandwich sandwich
∆T = 0 2515.73 2529.84 2511.55 2525.68 2457.98 2472.44
∆T = 300 2438.35 2452.50 2434.03 2448.21 2378.73 2393.24
∆T = 600 2319.01 2334.68 2314.48 2330.17 2256.24 2272.35

Results obtained from Tab. 5 point out that the shell reinforced by FGM stiffener
has natural frequency larger than the shell reinforced by homogeneous stiffeners. The
stiffener arrangement also influences to the natural frequency of the shell. With S-panel,
both arrangements on x direction and y direction give the same natural frequency. How-
ever, using orthogonal stiffeners will give larger natural frequency. These predictions
have important significances for stiffened shell manufacturing. Moreover, we can see
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that the volume fraction index k significantly influences to natural frequency of the shell.
Specifically, with model 1B, the natural frequency of the shell remarkably decreases as k
increases.

Table 5. Effect of FGM stiffeners on natural frequencies of S-Panel with model 1B
(h = a/40, ht/h = 0.5, hx = 0.025 m, dx = 0.006 m, ∆T = 200 K)

k Type of stiffeners FGM stiffeners Homogeneous stiffeners

Transversal stiffeners 1484.03 1515.18

k = 0.2 Longitudinal stiffeners 1484.03 1515.18

Orthogonal stiffeners 1487.01 1519.02

Transversal stiffeners 1076.31 1020.87

k = 1 Longitudinal stiffeners 1076.31 1020.87

Orthogonal stiffeners 1082.22 1024.25

Transversal stiffeners 829.49 761.59

k = 5 Longitudinal stiffeners 829.49 761.59

Orthogonal stiffeners 837.72 765.57

Table 6. Comparisons of natural frequencies for four models of S-panel
(hx = 0.02 m, dx = 0.005 m)

Modeling
ht/h = 0.2 ht/h = 0.3 ht/h = 0.5

T-ID T-D T-ID T-D T-ID T-D
1A 1676.21 1572.60 1786.11 1677.19 2026.56 1904.15
1B 2029.02 1822.00 1813.68 1615.07 1493.95 1307.03
2A 1866.59 1725.76 1878.66 1739.35 1897.64 1761.09
2B 1699.94 1550.22 1700.25 1551.63 1710.90 1565.09

Influence of ratio ht/h on the natural frequency of the shell in cases of temperature
dependent (TD) and temperature independent material properties (T-ID) is investigated
in Tab. 6. The results show that when ratio ht/h raises, natural frequencies of model 1A,
2A, and 2B increase while natural frequency of model 1B decreases. In the other hand,
shell’s natural frequency in T-ID case is larger than in TD case.

2.2.2. Frequency-amplitude curves
In this section, we consider a stiffened FGM sandwich shallow shell with h = a/40,

ht/h = 0.5, hx = 0.02 m, dx = 0.005 m.
The frequency-amplitude curves of nonlinear free vibration and nonlinear forced

vibration of the kinds of doubly curved shallow shells is shown in Fig. 1. These frequency-
amplitude curves of three types of shell are notably different. In which, extreme point of
the frequency-amplitude curve is the smallest with S-panel and the largest with H-panel.
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Fig. 3. The frequency-amplitude curves of the S-panel with models 1A and 2A (Q = 106 N/m2)

Fig. 3 compares frequency-amplitude curves of S-Panel with model 1A (symmetric
sigmoid law) and S-Panel with case 2A (symmetric power law). The extreme point of
the frequency-amplitude curve in case of 1A is larger than in case of 2A. However, the
deviation is not large.

2.2.3. Nonlinear dynamic response curves
To investigate the dynamic response curves, the geometric and material properties

of FGM sandwich shallow shells and stiffeners are chosen as: a = b = 1 m, h = a/30,
ht/h = hb/h, kt = 1, hx = 0.03 m, dx = 0.006 m, sx = 0.1 m.

Fig. 4 and Fig. 5 describe the influence of FGM stiffeners on nonlinear dynamic re-
sponse curves in case of the shell under mechanical load and thermo-mechanical load.
Obviously, in both cases, shell reinforced by FGM stiffener has deflection amplitude
smaller than un-stiffened shell. Hence, besides increasing natural frequency of shells,
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Effect of the temperature on nonlinear dynamic response curve of S-Panel is in-
vestigated in Fig. 6. Observably, when temperature increases, the amplitude of time-
deflection curve increases. At the same time, in TD case, this amplitude is larger than in
T-ID case. Besides, when the shell under thermal load, the deflection amplitude only has
negative zone without positive zone as in case of shell under mechanical load.

Fig. 7 and Fig. 8 compare nonlinear dynamic response of model 1A and model
2A in case of shell only under external pressure and in case of shell under both external
pressure and thermal environment. If shell is only subjected to external pressure (FM
boundary condition), the deflection amplitude of model 1A is larger than of model 2A.
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Fig. 9. Effect of the initial imperfection size on dynamic response curves of S-panel under external
pressure (ht/h = 0.1, q = 106 sin(100t), ε = 2)

However, with IM boundary condition and with effect of temperature, the reversed trend
happens.

Fig. 9 shows the effect of the initial imperfection size on dynamic response curve
of the S-panel (model 1A). With positive deflection zone, the imperfection shell’s deflec-
tion amplitude is smaller than perfect shell’s. However, in the negative zone, the perfect
shell’s deflection amplitude is smaller. In addition, it can be seen that the dynamic re-
sponse curve is very sensitive to the initial imperfection size.

The time-deflection curves of S-panel when the excitation frequency approaches
the shell’s natural frequency (as in Tab. 3) is shown in Fig. 10. A similar phenomenon as
harmonic beat phenomenon can be observed, in which, the amplitude of the harmonic
beat quickly raises when the excitation frequency is near the natural frequency. Besides,
under the influence of the damping, the harmonic beat phenomenon does not appear
clearly after numbers of vibration periods as in Fig. 11.
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frequency (as in Tab. 3) is shown in Fig. 12. A similar phenomenon as harmonic beat phenomenon can 

be observed. In which, the amplitude of the harmonic beat quickly raises when excitation frequency is 

near natural frequency. Besides, under the influence of the damping, the harmonic beat phenomenon 

does not appear clearly after numbers of vibration periods as in Fig. 13. 
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Fig. 14 and Fig. 15 investigate the deflection-velocity curve of S-panel under external pressure. 

When excitation frequency is near natural frequency, this curve has shape of closed spiral as Fig. 14. 

When excitation frequency is far from natural frequency, the curve becomes more turbulent and 
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Fig. 14. Deflection–velocity curve of S-
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with q = 106 sin(100t), ξ = 10−4, ht/h = 0.3

Fig. 12 and Fig. 13 investigate the deflection-velocity curve of S-panel under exter-
nal pressure. When the excitation frequency is near natural frequency, this curve has a
shape of closed spiral as shown in Fig. 12. When the excitation frequency is far from the
natural frequency, the curve becomes more turbulent and contains many cross lines as
shown in Fig. 13.

3. CONCLUSION

By using the analytical expressions and the governing equations in Part 1 and ap-
plying Runge–Kutta method, natural frequencies, nonlinear frequency-amplitude rela-
tion, and nonlinear dynamic response curves of sandwich shallow shells are investigated
in this Part. From the present results, some conclusion can be deduced as follow:

i). Structural models of sandwich shallow shell, FGM layer thickness, kinds of the
shell, volume fraction index, elastic foundation, and damping have significant influence
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on the natural frequencies, the nonlinear frequency-amplitude relation, and the nonlinear
dynamic response curve.

ii). For model 1B, shell reinforced by FGM stiffeners has natural frequency larger
than the shell reinforced by homogeneous stiffeners.

iii). For model 2A, the natural frequency of the FGM sandwich shell is larger than
natural frequency of normal FGM shell with the same thickness.

iv). Temperature reduces the natural frequency and increases the deflection am-
plitude of the dynamic response curve of the sandwich shell. Besides, the shells have
smaller natural frequency and larger deflection amplitude when the temperature-
dependent material properties are taken into account.

v). The sandwich shell with model of symmetric sigmoid law (Case 1A) has a larger
natural frequency and smaller deflection amplitude than model of symmetric power law
(Case 2A). The extreme point of the frequency-amplitude curve in case of symmetric
sigmoid law is also larger than in case of symmetric power law.
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