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Abstract. Nonlinear vibration of FGM sandwich doubly curved shallow shells reinforced
by FGM stiffeners subjected to mechanical and thermal loading are investigated based on
the first-order shear deformation theory (FSDT) with von Karman type nonlinearity, tak-
ing into account initial geometrical imperfection and smeared stiffener technique. Four
material models of the FGM sandwich shells are presented. Explicit expressions for natu-
ral frequencies, nonlinear frequency-amplitude relation, and time-deflection curves of the
FGM sandwich shallow shells are derived using Galerkin method.
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1. INTRODUCTION

Functionally graded material (FGM) sandwich structures with advantage proper-
ties as: high stiffness, high structural efficiency, strength, . . . have attracted attention of
many researchers. For FGM sandwich plates, Xia and Shen [1] considered the small-
and large-amplitude vibrations of compressively and thermally post-buckled sandwich
plates with FGM face sheets in thermal environments based on a high-order shear de-
formation plate theory (HSDT) and a general von Karman-type equation that includes a
thermal effect. Improved high-order sandwich plate theory is used to analyze the free
vibration of sandwich plates with functionally graded face sheets in various thermal en-
vironments by Khalili and Mohammadi [2]. Pandey and Pradyumna [3] investigated the
free vibration of sandwich plates made of FGM in the thermal environment by using a
layerwise theory.

For FGM sandwich shells, by employing the generalized differential quadrature
method, Aragh and Yas [4] studied the effect of continuously grading fiber orientation
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face sheets on free vibration of sandwich panels with functionally graded core using
generalized power-law distribution. Dey and Ramachandra [5] investigated the buckling
and post-buckling responses of cylindrical sandwich panels subjected to non-uniform in-
plane loadings by analytical method. The dynamic instability of three-layered cylindrical
shells containing a functionally graded interlayer subjected to static and time dependent
periodic axial compressive loads were presented by Sofiyev and Kuruoglu [6]. Dung and
Dong [7,8] analyzed the nonlinear thermo-mechanical stability of FGM sandwich doubly
curved shallow shells resting on elastic foundations based on FSDT and HSDT.

Recently, the nonlinear dynamic response and vibration of imperfect eccentrically
stiffened FGM doubly curved shallow shells subjected to mechanical and thermal loads
on elastic foundation were studied by Bich et al [9] using FSDT, and Duc and Quan [10]
based on the classical shell theory (CST). In their papers, a simple power-law distribution
(P-FGM) was used and the shell was reinforced by homogeneous stiffeners. The thermal
elements of stiffeners in expression of force and moment resultants weren’t considered.
The present paper extends the previous work [7] to investigate nonlinear vibration of
FGM sandwich shallow shells with some contributions: FGM sandwich doubly curved
shallow shells reinforced by FGM stiffeners; the thermal elements of stiffeners in expres-
sion of force and moment resultants are considered; analytical expression for Young’s
modulus, thermal expansion coefficient and mass density of shells and stiffeners are pre-
sented for four material models of FGM.

2. ECCENTRICALLY STIFFENED FGM SANDWICH SHALLOW SHELL
(ES-FGM SANDWICH SHALLOW SHELL)

Consider a sandwich doubly curved shallow shell which has the principal radii of
curvature Rx and Ry; the in-plane edges a and b; the thickness h. The shell is reinforced
by closely spaced eccentrically longitudinal and transversal FGM stiffeners and rested on
a Pasternak elastic foundation as shown in Fig. 1.

Fig. 1. Geometry and coordinate system of a sandwich doubly curved shallow shell reinforced
by FGM stiffeners on elastic foundations

Assume that shell consists of three layers, the top face sheet, core layer, and bottom
face sheet with thickness ht, hc and hb, respectively. These layers are made of FGMs or
homogeneous materials.

2.1. Sandwich shallow shell of FGM-homogeneous core-FGM model
Four material models of FGM sandwich shallow shells are shown in Figs. 2(a)

and 2(b). In these cases, the effective properties of the shell are varied in the thickness
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(a) Case 1A (b) Case 1B (c) Case 2A (d) Case 2B

Fig. 2. Four material models of the FGM sandwich shells with FGM stiffeners

direction according to general sigmoid law distribution as

[Esh, αsh, ρsh]=



[Ei, αi, ρi] + [Ekl , αkl , ρkl ]

(
2z + h

2ht

)kt

for − h
2
≤ z ≤ −h

2
+ ht,[

Ej, αj, ρj
]

for − h
2
+ ht ≤ z ≤ h

2
− hb,

[Ei, αi, ρi] + [Ekl , αkl , ρkl ]

(
−2z + h

2hb

)kb

for
h
2
− hb ≤ z ≤ h

2
.

(1)

where i = c, j = m, kl = mc for case 1A and i = m, j = c, kl = cm for case 1B and

Emc (T) = Em (T)− Ec (T) , αmc (T) = αm (T)− αc (T) , ρmc (T) = ρm (T)− ρc (T) ,

Ecm (T) = Ec (T)− Em (T) , αcm (T) = αc (T)− αm (T) , ρcm (T) = ρc (T)− ρm (T) ,

kt and kb are volume fraction indices of top FGM face sheet and bottom FGM face
sheet, and the subscripts m, c, sh denote the metal, ceramic, shell, respectively.

It is worth noting that, from these laws when ht = hb = h/2 and kt = kb, we obtain
known-well symmetric S-FGM laws.

2.2. Sandwich shallow shell of homogeneous-FGM core-homogeneous model
Figs. 2(c) and 2(d) show sandwich shells of homogeneous-FGM core-homogeneous

model. The effective properties of sandwich shell of these models are expressed as follow

[Esh, αsh, ρsh]=


[Ec, αc, ρc] for − h

2
≤ z ≤ −h

2
+ ht,

[Ec, αc, ρc] + [Emc, αmc, ρmc]

(
2z + h− 2ht

2hc

)k

for − h
2
+ ht ≤ z ≤ h

2
− hb,

[Em, αm, ρm] for
h
2
− hb ≤ z ≤ h

2
.

(2)
where i = c, j = m, kl = mc for case 1A, i = m, j = c, kl = cm for case 1B:

The law (2) generalizes the power law distribution. It can be seen that when ht =
hb = 0, this laws return to the known-well P-FGM laws.
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2.3. FGM stiffeners
In order to guarantee the continuity between shell and stiffeners, effective proper-

ties of stiffeners are given by

[Esx, αsx, ρsx] = [Ei, αi, ρi] + [Ekl , αkl , ρkl ]

(
2z− h

2hx

)k2

, h/2 ≤ z ≤ h/2 + hx,

[
Esy, αsy, ρsy

]
= [Ei, αi, ρi] + [Ekl , αkl , ρkl ]

(
2z− h

2hy

)k3

, h/2 ≤ z ≤ h/2 + hy.

(3)

For case 1A and case 2B: i = c, kl = mc and for case 1B and case 2A: i = m, kl = cm.
In Eq. (3), k2, k3 are the volume fraction indices and hx, hy are the thickness of

longitudinal and transversal stiffeners, respectively; the subscripts s denote the stiffener.

3. GOVERNING EQUATIONS

The strain components across the shell thickness at a distance z from the middle
surface are [7, 9] εx

εy
γxy

=
 u,x − w/Rx +

1
2 w2

,x + w,xw∗,x
v,y − w/Ry +

1
2 w2

,y + w,yw∗,y
u,y+v,x+w,xw,y+w,xw∗,y+w,yw∗,x

+z

 ψx,x
ψy,y

ψx,y+ψy,x

,
(

γxz
γyz

)
=

(
ψx + w,x
ψy + w,y

)
, (4)

where εx, εy are the normal strains, γxy is the in-plane shear strain, and γxz, γyz are the
transverse shear deformations; whereas u, v and w are the displacement components
along the x, y, z directions, respectively. ψx and ψy are the rotations of normal to the
middle surface with respect to y and x axes, respectively. Also, w∗ = w∗(x, y) is the
initial imperfection and assumed very small in comparison with the shell thickness.

Hooke’s law for FGM sandwich shallow shell and FGM stiffeners taking into ac-
count the temperature is defined as

For shells(
σsh

x , σsh
y

)
=

Esh (z, T)
1− ν2

[(
εx, εy

)
+ ν

(
εy, εx

)
− (1 + ν) αsh (z, T)∆T (1, 1)

]
,(

σsh
xy, σsh

xz , σsh
yz

)
=

Esh (z, T)
2 (1 + ν)

(
γxy, γxz, γyz

)
.

(5)

For stiffeners

σs
x = Esx (z, T) εx − Esx (z, T) αsx (z, T)∆T, σs

y = Esy (z, T) εy − Esy (z, T) αsy (z, T)∆T,

σs
xz = Gsxγxz, σs

yz = Gsyγyz.
(6)

Using the Lekhnitskii smeared stiffener technique and integrating the stress-strain
equations through the thickness of the shell, we obtain the expression of the force and
moment resultants of a ES-FGM sandwich doubly curved shallow shell [7]
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Nx =

(
H11 +

E1xdx

sx

)
ε0

x + H12ε0
y +

(
G11 +

E2xdx

sx

)
ψx,x + G12ψy,y −

1
1− ν

ϕsh
1 −

dx

sx
ϕsx

1 ,

Ny = H12ε0
x +

(
H22 +

E1ydy

sy

)
ε0

y + G12ψx,x +

(
G22 +

E2ydy

sy

)
ψy,y −

1
1− ν

ϕsh
1 −

dy

sy
ϕ

sy
1 ,

Nxy = H66γ0
xy + G66

(
ψx,y + ψy,x

)
,

(7)

Mx =

(
G11 +

E2xdx

sx

)
ε0

x + G12ε0
y +

(
L11 +

E3xdx

sx

)
ψx,x + L12ψy,y −

1
1− ν

ϕsh
2 −

dx

sx
ϕsx

2 ,

My = G12ε0
x +

(
G22 +

E2ydy

sy

)
ε0

y + L12ψx,x +

(
L22 +

E3ydy

sy

)
ψy,y −

1
1− ν

ϕsh
2 −

dy

sy
ϕ

sy
2 ,

Mxy = G66γ0
xy + L66

(
ψx,y + ψy,x

)
.

(8)
The transverse force resultants are

Qx = H44w,x + H44ψx, Qy = H55w,y + H55ψy , (9)

where sx and sy are the spacing of the longitudinal and transversal stiffeners, hx, dx and
hy, dy are thickness and width for longitudinal stiffeners (x-direction) and transversal
stiffeners (y-direction), respectively. Expressions of Hij, Gij, Lij and Ei, Eix, Eiy (i = 1÷ 3)
and ϕsh

i , ϕsx
i , ϕ

sy
i (i = 1, 2) are given in Appendix I.

In systems of Eqs. (7)-(9), FGM stiffeners and thermal elements are taken into ac-
count in calculations for sandwich shallow shell. This is one of important contributions
of the present study.

The stress function f = f (x, y) is introduced as

Nx = f,yy , Ny = f,xx , Nxy = − f,xy. (10)

The nonlinear motion equations of an imperfect FGM sandwich shallow shell on
elastic foundations with damping force based on FSDT are of the form [7, 9]

H44w,xx + H55w,yy + H44ψx,x + H55ψy,y + f,yy
(
w,xx + w∗,xx

)
− 2 f,xy

(
w,xy + w∗,xy

)
+ f,xx

(
w,yy + w∗,yy

)
+

f,yy

Rx
+

f,xx

Ry
+ q− K1w + K2

(
w,xx + w,yy

)
= I1w,tt + 2εI1w,t ,

(11)
G∗21 f,xxx+(G∗11−G∗66) f,xyy+L∗11ψx,xx+L∗66ψx,yy+(L∗12+L∗66)ψy,xy−H44 (w,x+ψx)= Ī3ψx ,tt ,

(12)
G∗12 f,yyy+(G∗22−G∗66) f,xxy+(L∗21+L∗66)ψx,xy+L∗22ψy,yy+L∗66ψy,xx−H55

(
w,y+ψy

)
= Ī3ψy ,tt ,

(13)
where ε is damping coefficient and Ī3 = − I2

2
I1

+ I3, in which

(I1, I2, I3)=

h/2∫
−h/2

ρ (z, T)
(
1, z, z2) dz+

bx

dx

h/2+hx∫
h/2

ρsx (z, T)
(
1, z, z2) dz+

by

dy

h/2+hy∫
h/2

ρsy (z, T)
(
1, z, z2) dz.
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The deformation compatibility equation is given by [7]

H∗11 f,xxxx + (H∗66 − 2H∗12) f,xxyy + H∗22 f,yyyy − G∗21ψx,xxx − G∗12ψy,yyy + (G∗66 − G∗11)ψx,xyy

+(G∗66−G∗22)ψy,xxy−
(

w2
,xy−w,xxw,yy−w,xxw∗,yy+2w,xyw∗,xy−w∗,xxw,yy−

w,yy

Rx
−w,xx

Ry

)
=0.

(14)
where H∗ij, G∗ij, L∗ij are determined in Appendix II.

Eqs. (11)-(14) including four dependent unknown functions w, ψx, ψy and f are
used to investigate the nonlinear vibration of ES-FGM sandwich doubly curved shallow
shell on elastic foundations.

4. NONLINEAR VIBRATION ANALYSIS

Two boundary conditions are considered in this study as follows.
Case 1. The four edges of the shell are simply supported and freely movable (FM),

so that the boundary conditions are

w = Mx = Nxy = ψy = 0, Nx = Nx0, on x = 0, a,
w = My = Nxy = ψx = 0, Ny = Ny0, on y = 0, b.

(15)

Case 2. The four edges of the shell are simply supported and immovable (IM), so
that the boundary conditions are

w = u = ψy = Mx = 0, Nx = Nx0, on x = 0, a,
w = v = ψx = My = 0, Ny = Ny0, on y = 0, b.

(16)

where Nx0 and Ny0 are prebuckling force resultants in directions x and y, respectively.
The approximate solutions of Eqs. (11)-(14) and satisfying the boundary conditions

(15), (16) are assumed in the form

(w, w∗) = (W, ξh) sin αx sin βy , ψx = Ψx cos αx sin βy , ψy = Ψy sin αx cos βy, (17)

where α = mπ/a, β = nπ/b and m, n are numbers of half waves in x and y directions,
respectively, and W, Ψx, Ψy are amplitudes of deflection and slope rotations, respectively.
The coefficient ξ ∈ [−0.5, 0.5] is an imperfection size of the shell.

Substituting the expressions (17) into Eq. (14) and solving the resulting equation,
the expression of the stress function f is obtained as

f = f1 cos 2αx + f2 cos 2βy ++ f3 sin αx sin βy +
1
2

Nx0y2 +
1
2

Ny0x2, (18)

in which

f1 =
β2

32H∗11α2 W (W + 2ξh) , f2 =
α2

32H∗22β2 W (W + 2ξh) ,

f3 =
1[

H∗11α4 + H∗22β4 +
(

H∗66 − 2H∗12

)
α2β2

] ( β2

Rx
+

α2

Ry

)
W+

+

[
G∗21α3Ψx + G∗12β3Ψy + (G∗11 − G∗66) αβ2Ψx + (G∗22 − G∗66) α2βΨy

][
H∗11α4 + H∗22β4 +

(
H∗66 − 2H∗12

)
α2β2

] .

(19)
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Substituting the expressions of f , w, w∗ into the Eqs. (11)-(13) and applying Galerkin
method to the resulting equations yields

a11W + a12Ψx + a13Ψy + a14 (W + ξh)Ψx + a15 (W + ξh)Ψy

+ b1W (W + ξh) + b2W (W + 2ξh) + b3W (W + ξh) (W + 2ξh)

+ b4q−
(

Nx0α2
m + Ny0 β2

n
)
(W + ξh) + b4

(
Nx0

Rx
+

Ny0

Ry

)
= I1Ẅ + 2εI1Ẇ,

(20)

a21W + a22Ψx + a23Ψy + b5W (W + 2ξh) = Ī3Ψ̈x , (21)

a31W + a32Ψx + a33Ψy + b6W (W + 2ξh) = Ī3Ψ̈y , (22)
where δm = (−1)m − 1, δn = (−1)n − 1 and aij, bi are given in Appendix III.

The system of Eqs. (20)-(22) is used to analyze the nonlinear vibration of the im-
perfect stiffened FGM sandwich shallow shells on elastic foundations under mechanical
and thermo-mechanical loads.

4.1. Nonlinear vibration analysis of the shells only under external pressure
Consider an imperfect ES-FGM sandwich shallow shell with all freely-movable

edges (Case 1) subjected to uniformly distributed transverse load q = Q sin Ωt. In this
case, Eqs. (20)-(22) become

a11W + a12Ψx + a13Ψy + a14 (W + ξh)Ψx + a15 (W + ξh)Ψy

+ b1W (W + ξh) + b2W (W + 2ξh) + b3W (W + ξh) (W + 2ξh)

+ b4Q sin Ωt−
(

Nx0α2
m+Ny0β2

n
)
(W+ξh)+b4

(
Nx0

Rx
+

Ny0

Ry

)
= I1Ẅ+2εI1Ẇ,

(23)

a21W + a22Ψx + a23Ψy + b5W (W + 2ξh) = Ī3Ψ̈x , (24)

a31W + a32Ψx + a33Ψy + b6W (W + 2ξh) = Ī3Ψ̈y . (25)
From these equations, dynamic responses of ES-FGM sandwich shallow shells are

obtained by using the four-order Runge-Kutta method. The following will present some
cases which we can obtain explicit expressions to determine the natural frequencies, non-
linear frequency-amplitude relation of the sandwich shell under the mechanical load.

4.1.1. Natural frequencies
Taking linear part of the system Eqs. (23)-(25) and putting q = 0, the natural fre-

quencies of the perfect shells are determined by solving the following determinant∣∣∣∣∣∣
a11 + I1ω2 a12 a13

a21 a22 + Ī3ω2 a23
a31 a32 a33 + Ī3ω2

∣∣∣∣∣∣ = 0. (26)

If Ψ̈x and Ψ̈y are assumed to be very small and can be ignored, by solving Ψx, Ψy
from Eqs. (24), (25) and substituting them into Eq. (23) gives

I1Ẅ + 2εI1Ẇ − a1W − a2W (W + 2ξh)− a3W (W + ξh)
− a4W (W + ξh) (W + 2ξh) = b4Q sin Ωt,

(27)
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where ai(i = 1÷ 4) are given in Appendix IV.
From Eq. (27), the explicit expression of the natural frequency of perfect shell

is given

ωmn =

√
− a1

I1
. (28)

4.1.2. Frequency-amplitude relation
Consider the perfect shell and the vibration is nonlinear forced vibration, Eq. (27)

is of the form
Ẅ + 2εẆ + ω2

mn
(
W − XW2 + YW3)− Q̄ sin Ωt = 0, (29)

in which X =
(a2 + a3)

−a1
, Y =

a4

a1
, Q̄ =

b4

I1
Q.

Seeking the solution form of Eq. (29) as W = A sin Ωt, and applying procedure
like Galerkin method to Eq. (29), the frequency-amplitude relation of nonlinear forced
vibration is obtained as

η2 − 4ε

πωmn
η =

(
1− 8X

3π
A +

3Y
4

A2
)
− Q̄

Aω2
mn

, (30)

where η = Ω/ωmn is the non-dimensional frequency parameter.

4.2. Nonlinear vibration analysis of the shells under external pressure and thermal
load

In this section, we consider an imperfect FGM sandwich doubly curved shallow
shell reinforced by FGM stiffeners with all immovable edges (Case 2) and exposed to
a thermal environment uniformly rised from initial value Ti to final one Tf and ∆T =
Tf − Ti is independent to thickness variable z. The condition on immovable at all edges
is fulfilled on the average sense as [7–9]

b∫
0

a∫
0

∂u
∂x

dxdy = 0,
a∫

0

b∫
0

∂v
∂y

dydx = 0. (31)

Solving Eq. (31), we get Nx0, Ny0, then substituting these expressions into Eqs. (20)-
(22) gives

b11W + b12Ψx + b13Ψy + b14Ψx (W + ξh) + b15Ψy (W + ξh)
+ c1W (W + ξh) + c2W (W + 2ξh) + c3W (W + ξh) (W + 2ξh) + b4q

+ c4 (W + ξh)∆T + c5∆T = I1Ẅ − 2εI1Ẇ,

(32)

a21W + a22Ψx + a23Ψy + b5W (W + 2ξh) = Ī3Φ̈x , (33)

a31W + a32Ψx + a33Ψy + b6W (W + 2ξh) = Ī3Φ̈y , (34)
where bij and ci are found in Appendix VI.

By applying the fourth-order Runge-Kutta method for the system of Eqs. (32)-(34)
combined with initial conditions, the nonlinear dynamic response of the sandwich shell
with all immovable edges under external pressure and thermal loads is investigated.
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The natural frequencies of the perfect shell are determined from the system of Eqs.
(32)-(34) as ∣∣∣∣∣∣

b11 + c4∆T + I1ω2 b12 b13
a21 a22 + Ī3ω2 a23
a31 a32 a33 + Ī3ω2

∣∣∣∣∣∣ = 0 (35)

If Ψ̈x and Ψ̈y are ignored , the system of Eqs. (32)-(34) become

I1Ẅ + 2εI1Ẇ − d1W − c4∆T (W + ξh)− d2W (W + 2ξh)
− d3W (W + ξh)− d4W (W + ξh) (W + 2ξh)− c5∆T = b4Q sin Ωt,

(36)

in which di are found in Appendix VII. By the same method as in the case of shell only
under mechanical loads, from Eq. (36), the explicit expressions of the natural frequency
and the frequency-amplitude relation of the perfect shell are received as below.

The natural frequency is given by

ωmn =

√
− (d1 + c4∆T)

I1
, (37)

The frequency-amplitude relation of nonlinear forced vibration is obtained as

η2 − 4ε

πωmn
I1η =

(
1− 8X̄

3π
A +

3Ȳ
4

A2
)
− Q̃

Aω2
mn
− 4c̄5∆T

Aπω2
mn

, (38)

in which X̄ =
d2 + d3

− (d1 + c4∆T)
, Ȳ =

d4

(d1 + c4∆T)
, c̄5 =

c5

I1
, Q̃ =

b4Q
I1

.

5. CONCLUSION

Nonlinear vibration of the FGM sandwich doubly curved shallow shells reinforced
by FGM stiffeners in thermal environment is investigated based on the FSDT. The mate-
rial properties of shell are assumed to be temperature-dependent. Four material models
with general power law distributions are considered. The explicit expressions of the force
and moment resultants depending on stiffeners and temperature are established. By ap-
plying Galerkin’s method, the analytical expressions for determining natural frequencies,
nonlinear frequency-amplitude relation, and nonlinear dynamic response curves of sand-
wich shallow shells are obtained. In the next part, nonlinear dynamic responses will be
numerically investigated by the fourth-order Runge-Kutta method.
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APPENDIX I
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APPENDIX III
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