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Abstract. The propagation of Rayleigh waves along an obliquely cut surface in a direc-
tional fiber-reinforced composite was studied recently by Ohyoshi [Ohyoshi T. Compos
Sci Technol 2000; 60; 2191-6]. The author derived the secular equation of the wave, how-
ever, it is still implicit. In this paper, a fully explicit secular equation of the wave is
obtained by using the method of first integrals. From it we immediately arrive at the
secular equation of the wave for the case when the cut surface is parallel to the fiber
direction. This secular equation is much more simple than the ones obtained recently by
Cerv [Cerv J. Int Rev Mech Eng (IREME) 2008; 2; 762-72] and Cerv et al. [Cerv J et al.
Composite Structures 2010; 92; 568-77]. Based on the obtained secular equations some
approximate formulas for the velocity of Rayleigh waves are established and it is shown
that they are good approximations. The explicit secular equations and the approximate
formulas for the velocity derived in this paper are useful for analyzing the effect of the
material properties and the orientation of the fiber direction on the Rayleigh wave ve-
locity, especially they are powerful tools for solving the inverse problem: determining the
material parameters from the measured values of the velocity.

Key words: Fibres, mechanical properties, anisotropy, non-destructive testing, Rayleigh
waves.

1. INTRODUCTION

The propagation of Rayleigh waves along an obliquely cut surface in a directional
fiber-reinforced composite was studied recently by Ohyoshi [1]. The author derived the
secular equation of the waves by solving analytically the fully quartic characteristic equa-
tion. Among four complex roots of this equation two roots having positive imaginary parts
are chosen in order to ensure the decay condition. Since the author could not give the an-
alytical expressions of these two roots, the obtained secular equation is still not explicit.
It is therefore not convenient in practical application.

In this paper, we obtain a fully explicit secular equation of the wave by using the
method of first integrals [2, 3, 4]. It is a quartic equation in terms of squared velocity.
From it we immediately obtain the secular equation for the case when the cut surface is
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parallel to the fiber direction. This secular equation is a cubic equation in terms of squared
velocity, and it is much more simple than the ones obtained recently by Cerv [5] and Cerv
et al. [6]. Some approximate formulas for the velocity of Rayleigh waves are established
for the case when the cut surface is parallel or perpendicular to the fiber direction, and
it is shown that they are good approximations. The obtained explicit secular equations
and approximate formulas for the velocity will be useful for evaluating the effect of the
material properties and the orientation of the fiber direction on the Rayleigh wave velocity,
especially they are powerful tools for solving the inverse problem: determining the material
parameters from the measured values of the velocity.

2. RAYLEIGH WAVES ALONG AN OBLIQUELY CUT SURFACE IN A

DIRECTIONAL FIBER-REINFORCED COMPOSITE

2.1. Basic equations

Consider a thin fiber-reinforced composite plate occupying the half-space x2 ≥ 0 and
its fiber direction is parallel to the X-axis (see Fig. 1). Suppose that the Z-axis coincides
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Fig. 1. The thin fiber-reinforced composite plate x2 ≥ 0 whose fiber direction
parallel to the X-axis, the Z-axis coincides with the x3-axis and the coordinate
system (x1, x2) is the rotated one from (X, Y ) by counter clockwise angle θ (0 ≤
θ ≤ π).

with the x3-axis and the coordinate system (x1, x2) is the rotated one from (X, Y ) by
counter clockwise angle θ (0 ≤ θ ≤ π). Suppose that the thin fiber-reinforced composite
plate is subjected to the plane stress state

σ31 = σ32 = σ33 = 0 (1)

Then in the coordinate system (X, Y ), the stress-strain relation has the form [1, 6]

σXX = B11εXX + B12εY Y , σY Y = B12εXX + B22εY Y , σXY = 2B66εXY (2)
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where Bij are material (stiffness) coefficients which can be expressed in terms of the
engineering constants (Young’s and shear moduli, Poisson’s ratios) as [1, 6]

B11 =
E1

1 − ν12ν21
, B22 =

E2

1− ν12ν21
, B12 =

ν21E1

1 − ν12ν21
=

ν12E2

1 − ν12ν21
, B66 = G12 (3)

and satisfy the inequalities

Bkk > 0, k = 1, 2, 6, B11B22 − B2
12 > 0 (4)

which are necessary and sufficient conditions for the strain energy of the material to be
positive define. In the coordinate system (x1, x2) the stress-strain relation is [1, 6]

σ11 = Q11ε11 + Q12ε22 + 2Q16ε12

σ22 = Q12ε11 + Q22ε22 + 2Q26ε12

σ12 = Q16ε11 + Q26ε22 + 2Q66ε12

(5)

where [1]

Q11 = B11c
4
θ + 2(B12 + 2B66)c

2
θs

2
θ + B22s

4
θ

Q22 = B11s
4
θ + 2(B12 + 2B66)c

2
θs

2
θ + B22c

4
θ

Q12 = (B11 + B22 − 4B66)c
2
θs

2
θ + B12(c

4
θ + s4

θ)

Q66 = (B11 + B22 − 2B12 − 2B66)c
2
θs

2
θ + B66(c

4
θ + s4

θ)

Q16 = −(B11 − B12 − 2B66)c
3
θsθ − (B12 − B22 + 2B66)cθs

3
θ

Q26 = −(B11 − B12 − 2B66)cθs
3
θ − (B12 − B22 + 2B66)c

3
θsθ

(6)

in which cθ := cosθ, sθ := sinθ and the strain εij are expressed in terms of the displacement
gradients um,n as

ε11 = u1,1, ε22 = u2,2, ε12 = (u1,2 + u2,1)/2 (7)

On view of (6) it is easily to show that

Qkk(θ) =Qkk(π − θ) (k = 1, 2, 6), Q12(θ) = Q12(π − θ)

Qk6(θ) = −Qk6(π − θ) (k = 1, 2)
(8)

and if B11 = B22 (⇔ E1 = E2):

Qkk(θ) =Qkk(π/2− θ) (k = 1, 2, 6), Q12(θ) = Q12(π/2− θ)

Qk6(θ) = −Qk6(π/2− θ) (k = 1, 2)
(9)

In the absence of body forces, equations of motion are [1]

σ11,1 + σ12,2 = ρü1, σ12,1 + σ22,2 = ρü2 (10)

Following the same procedure carried out in [7] Section 2, from Eqs. (5), (7) and
(10) we have

[

u′

σ′

]

= N

[

u
σ

]

(11)
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where u = [u1, u2]
T , σ = [σ12, σ22]

T , the symbol T indicates the transpose of matrices,
the prime indicates the derivative with respect to x2 and

N =

[

N1 N2

K N3

]

, N1 =

[

(d1/d)∂1 −∂1

−(d2/d)∂1 0

]

, N2 =
1

d

[

Q22 −Q26

−Q26 Q66

]

K =

[

ρ∂2
t − (d3/d)∂2

1 0
0 ρ∂2

t

]

, N3 = NT
1

(12)

Here we use the notations: ∂1 = ∂/(∂x1), ∂2
1 = ∂2/(∂x2

1), ∂2
t = ∂2/(∂t2) and

d = Q22Q66 − Q2
26, d1 = Q12Q26 − Q22Q16

d2 =Q12Q66 − Q16Q26, d3 = Q11d + Q16d1 − Q12d2
(13)

From (8), (9) and (13) it implies that

d(θ) = d(π − θ), d1(θ) = −d1(π − θ), dk(θ) = dk(π − θ) (k = 2, 3) (14)

and if B11 = B22 (⇔ E1 = E2)

d(θ) = d(π/2− θ), d1(θ) = −d1(π/2− θ), dk(θ) = dk(π/2− θ) (k = 2, 3) (15)

In addition to Eq. (11), the displacement vector u and the traction vector σ are
required to satisfy the decay condition at the infinity

u(+∞) = 0, σ(+∞) = 0 (16)

and the free-traction condition at the edge x2 = 0

σ(0) = 0 (17)

2.2. Explicit secular equation

Now we consider the propagation of a Rayleigh wave, travelling with velocity c and
wave number k in the x1-direction. The components u1, u2 of the displacement vector and
σ12, σ22 of the traction vector at the planes x3 = const are found in the form

{u1, u2, σ12, σ22}(x1, x2, t) = {U1(kx2), U2(kx2), ikV1(kx2), ikV2(kx2)}eik(x1−ct) (18)

Substituting (18) into (11) yields
[

U ′

V ′

]

= iM

[

U
V

]

(19)

where U = [U1 U2]
T , V = [V1 V2]

T , and

M =

[

M1 M2

Q M3

]

, M1 =

[

d1/d −1
−d2/d 0

]

, M2 =
1

d

[

Q22 −Q26

−Q26 Q66

]

,

Q =

[

X − d3/d 0
0 X

]

, M3 = MT
1

(20)

X = ρc2, the prime in Eq. (19) indicates the derivative with respect to y = kx2. From
(20), one can see that the characteristic equation |M−pI | = 0 of Eq. (19) is a fully quartic
equation for p (see also Eq. (18) in Ref. [1]), therefore we should employ the method of
first integrals [2, 3] in order to obtain the explicit secular equation of the wave.
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Eliminating U from (19), we have

αV ′′ − iβV ′ − γV = 0 (21)

where the matrices α, β, γ are given by

α = Q−1 =







d

dX − d3
0

0
1

X






(22)

β = M1Q
−1 + Q−1M3 =







2d1

dX − d3
− 1

X
− d2

dX − d3

− 1

X
− d2

dX − d3
0






(23)

γ = M1Q
−1M3 − M2 =









d2
1

d(dX − d3)
+

1

X
− Q22

d
− d1d2

d(dX − d3)
+

Q26

d

− d1d2

d(dX − d3)
+

Q26

d

d2
2

d(dX − d3)
− Q66

d









(24)

Note that α, β, γ are symmetric real matrices. From (16)-(18) it follows

V (0) = V (+∞) = 0 (25)

Our task now is to solve Eq. (21) along with the boundary condition (25). In the
component form Eq. (21) is written as follows

αklV
′′

l − iβklV
′

l − γklVl = 0, (k, l = 1, 2) (26)

Multiplying two sides of Eq. (26) by iΣm and then adding the resulting equation to
its conjugation give

αkl(iV
′′

l V m + iV ′′

l Vm) + βkl(V
′

l V m + V ′

l Vm) + γkl(VliV m + V liVm) = 0 (27)

where the bar indicates the complex conjugation. Now we introduce 2×2-matrices D, E, F
whose elements are defined as follows

Dlm =< iV ′′

l , Vm >, Elm =< V ′

l , Vm >, Flm =< Vl, iVm >, l, m = 1, 2 (28)

where: < ϕ, g >=
+∞
∫

0

(ϕg + ϕg)dy. From (25) and (28), we find out that D, E, F being

antisymmetric, i. e.

D =





0 d

−d 0



 , E =





0 e

−e 0



 , F =





0 f

−f 0



 (29)

Now, integrating Eq. (27) from 0 to +∞ provides

αD + βE + γF = 0 (30)
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From (29) and (30) it follows










α11d + β11e + γ11f = 0

α12d + β12e + γ12f = 0

α22d + β22e + γ22f = 0

(31)

Thus, we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α11 β11 γ11

α12 β12 γ12

α22 β22 γ22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (32)

in order that the homogeneous linear system (31) has a non trivial solution. Introducing
(22)-(24) into (32) yields

F (X, θ) ≡ dX2[(d + d2)X − d3][d
2
2 − Q66(dX − d3)]+

+ (dX − d3)[(d + d2)X − d3][Q22dX2 − (d2 + d2
1 + Q22d3)X + dd3]

− 2d1X
2(dX − d3)[Q26(dX − d3)− d1d2] = 0

(33)

Equation (33) is the desired explicit secular equation and it is a quartic equation for
X = ρc2. On use of (8), (9), (14) and (15) one can prove that F (X, θ) = F (X, π − θ) and
if B11 = B22 (⇔ E1 = E2), then F (X, θ) = F (X, π/2− θ). From these facts and Eq. (33)
it follows

X(θ) = X(π − θ) and if B11 = B22 then X(θ) = X(π/2− θ) (34)

or equivalently

cR(θ) = cR(π − θ) and if B11 = B22 then cR(θ) = cR(π/2− θ) (35)

where cR is the velocity of Rayleigh waves.
Remark 1:

The first of (35) says that in the interval [0, π] the curve cR = cR(θ) has always one
symmetry axis, namely the line θ = π/2. If B11 = B22 (⇔ E1 = E2), then in addition,
the lines θ = π/4 and θ = 3π/4 are symmetry axes of the curve cR = cR(θ) in the
interval [0, π/2] and [π/2, π], respectively, by the second of (35). With this fact now we
can understand why the curves cR = cR(θ) in the figures 14, 15, 18, 19 in [6] have the
symmetry axis θ = π/2 in the interval [0, π], while the curves cR = cR(θ) in the figures 16,
17, 20, 21 in [6] have the symmetry axis θ = π/4 in the interval [0, π/2] and the symmetry
axis θ = 3π/4 in the interval [π/2, π], in addition.

By dividing two sides of Eq. (33) by (B66)
11 we obtain the dimensionless secular

equation, namely

f(x, r1, r2, r3, θ) ≡ d̂x2[(d̂ + d̂2)x − d̂3][d̂
2
2 − Q̂66(d̂x − d̂3)]

+ (d̂x − d̂3)[(d̂ + d̂2)x − d̂3][Q̂22d̂x2 − (d̂2 + d̂2
1 + Q̂22d̂3)x + d̂d̂3]

− 2d̂1x
2(d̂x − d̂3)[Q̂26(d̂x − d̂3) − d̂1d̂2] = 0

(36)
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where x = X/B66 called the squared dimensionless velocity, r1 = B11/B66, r2 = B22/B66,
r3 = B12/B66, and

Q̂11 = r1c
4
θ + 2(r3 + 2)c2

θs
2
θ + r2s

4
θ, Q̂22 = r1s

4
θ + 2(r3 + 2)c2

θs
2
θ + r2c

4
θ

Q̂12 = (r1 + r2 − 4)c2
θs

2
θ + r3(c

4
θ + s4

θ), Q̂66 = (r1 + r2 − 2r3 − 2)c2
θs

2
θ + c4

θ + s4
θ

Q̂16 = −(r1 − r3 − 2)c3
θsθ − (r3 − r2 + 2)cθs

3
θ

Q̂26 = −(r1 − r3 − 2)cθs
3
θ − (r3 − r2 + 2)c3

θsθ

d̂ = Q̂22Q̂66 − Q̂2
26, d̂1 = Q̂12Q̂26 − Q̂22Q̂16

d̂2 = Q̂12Q̂66 − Q̂16Q̂26, d̂3 = Q̂11d̂ + Q̂16d̂1 − Q̂12d̂2

(37)

It is clear from (36) that x depends on three dimensionless material parameters
rk (k = 1, 2, 3) and the angle θ (the orientation of the fiber direction), and from (35) it
follows

x(r1, r2, r3, θ) = x(r1, r2, r3, π − θ) (38)

and if B11 = B22 (⇔ E1 = E2), we have in addition

x(r1, r2, r3, θ) = x(r1, r2, r3, π/2− θ) (39)

On view of (4) the dimensionless rk are subjected to: r1 > 0, r2 > 0 and r2
3 < r1r2.

The explicit secular equations (33) and (36) are useful for evaluating the effect of the
orientation of the fiber direction and of the material properties on the velocity of Rayleigh
waves. They are also convenient tools for solving the inverse problem: determining the
material parameters from measured values of the velocity.
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Fig. 2. Dependence of
√

x = cR/
√

B66/ρ on the orientation θ of the fiber direction
for the material SE84LV: E1 = 114.20 GPa, E2 = 8.80 GPa, G12 = 5.15 GPa,
ν12 = 0.28, ρ = 1540 kg m−3.
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As examples, we apply the secular equation (36) to draw the curves x = x(θ) for
the materials: SE84LV and Fibredux whose material constants are listed in Table 1 in Ref.
[6]. These curves are presented in Figs. 2, 3. By (38) it is sufficient to draw these curves
in the interval [0, 90o].
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Fig. 3. Dependence of
√

x = cR/
√

B66/ρ on the orientation θ of the fiber direction
for the material Fibredux: E1 = E2 = 62.2 GPa, G12 = 5.08 GPa, ν12 = 0.041,
ρ = 1560 kg m−3.

2.3. Special cases

When θ = 0, from (6) and (13) we have

Qkk = Bkk, k = 1, 2, 6, Q12 = B12, Q16 = Q26 = 0

d = B22B66, d1 = 0, d2 = B12B66, d3 = B66(B11B22 − B2
12)

(40)

Introducing (40) into (33) yields a cubic equation for X , namely

B22B66X
2(B11 − X)− (B66 − X)[B2

12 − B22(B11 − X)]2 = 0 (41)

This is the secular equation of Rayleigh waves for the case when the fiber direction is
parallel to the edge of the composite plate. One can see that if a Rayleigh wave exists then

0 < X < min{B11, B66} (42)

Remark 2:

The secular equation (41) is much more simple than the secular equations (13), (21)
in [5] obtained recently by Cerv, and it is valid for any orthotropic elastic materials.

When the material is isotropic: B11 = B22 = λ+2µ, B12 = λ, B66 = µ, λ, µ are the
usual Lame constants, Eq. (41) reduces to the well-known Rayleigh equation

x3 − 8x2 + 8(3− 2δ)x− 16(1− δ) = 0 (43)

where x = ρc2/µ, δ = µ/(λ + 2µ).
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When θ = π/2, by (6) and (13) we have:

Q11 = B22, Q22 = B11, Q66 = B66, Q12 = B12, Q12 = B12, Q16 = Q26 = 0

d = B11B66, d1 = 0, d2 = B12B66, d3 = B66(B11B22 − B2
12)

(44)

Using (44) into (33) we have:

B11B66X
2(B22 − X)− (B66 − X)[B2

12 − B11(B22 − X)]2 = 0 (45)

in which 0 < X < min{B22, B66}. Equation (45) is the secular equation of Rayleigh waves
for the case when the fiber direction is perpendicular to the edge of the composite plate.
It is a also cubic equation for X .

3. APPROXIMATE FORMULAS FOR THE RAYLEIGH

WAVE VELOCITY

In this section we establish some approximate formulas for the Rayleigh wave ve-
locity for the cases when the fiber direction is parallel or perpendicular to the edge of the
composite.

After expanding and rearranging Eq. (41) becomes:

B22(B22 − B66)X
3 + B22(B11B66 − B22B66 − 2δ12)X

2

+ δ12(δ12 + 2B22B66)X − B22δ
2
12 = 0

(46)
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Fig. 4. Dependence on b1 ∈ [0, 0.5] of x = c2

R
/c2

T
that is calculated by solving

directly the secular equation (41) (solid line), by the approximate formula (51)-
(52) (dashed line). Here we take b2 = 0.9937, b3 = 1.7532.

Dividing two sides of Eq. (46) by (B66)
5 (> 0) leads to

m3x
3 + m2x

2 + m1x + m0 = 0, 0 < x = X/B66 < 1 (47)
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where

m3 = b1b3(1 − b1b3), m2 = b1b
2
3(1 − b1 − 2b1b2b3)

m1 = b2
1b2b

3
3(b2b3 + 3), m0 = −b2

1b
2
2b

4
3

b1 = B22/B11, b2 = 1 − B2
12/(B11B22), b3 = B11/B66

(48)

According to Vinh and Malischewsky [8], in the interval [0, 1], the best approximate
second-order polynomial of x3 in the sense of least squares is

1.5x2 − 0.6x + 0.05 (49)

Introducing (49) into (47) yields a quadratic equation, namely

(m2 + 1.5m3)x
2 − (0.6m3 − m1)x + m0 + 0.05m3 = 0 (50)

whose solution corresponding to the Rayleigh-edge wave is

x =
B −

√
B2 − 4AC

2A
(51)

where

A = b1b3[b3(1 + 0.5b1 − 2b1b2b3) − 1.5]

B = b1b3[0.6(b1b3 − 1)− b1b2b
2
3(b2b3 + 2)]

C = 0.05b1b3(b1b3 − 1)− b2
1b

2
2b

4
3

(52)
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Fig. 5. Dependence on b2 ∈ [0.1, 0.9] of x = c2

R
/c2

T
that is calculated by solving

directly the secular equation (41), by the approximate formulas (51)-(52) and
(51)-(53). They almost totally coincide with each other. Here we take b1 = 0.077,
b3 = 22.7813.
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If we use the best approximate second-order polynomial of x3 in the space C[0, 1],
namely: 1.5x2 − 0.5625x + 0.03125 (see [8]), then x is given by (51) in which

A = b1b3[b3(1 + 0.5b1 − 2b1b2b3)− 1.5]

B = b1b3[0.5625(b1b3 − 1)− b1b2b
2
3(b2b3 + 2)]

C = 0.03125b1b3(b1b3 − 1)− b2
1b

2
2b

4
3.

(53)

The Figs. 4, 5 , 6 show the dependence of the squared dimensionless velocity x on the

0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

b
3
 

x=
c2 R

/c
2 T
 

Fig. 6. Dependence on b3 ∈ [0.5, 4] of x = c2

R
/c2

T
that is calculated by solving

directly the secular equation (41) (solid line), by the approximate formula (51)-
(52) (dashed line). Here we take b1 = 1, b2 = 0.8432.

dimensionless material parameters bk. It is shown from these figures that the formulas (51)-
(52) and (51)-(53) are highly accurate approximations. They are thrtefore significant in
practical applications, especially for solving the inverse problem: determining the material
parameters of the composite from measured values of the velocity of Rayleigh waves.Since
these formulas are good approximations as shown from the Figs. 4, 5 , 6, they are useful
in practical applications.

Remark 3:

When the fiber direction is perpendicular to the edge of the composite, the Rayleigh
wave velocity is approximately calculated by (51)-(52) or (51)-(53) in which b1 = B11/B22,
b2 = 1 − B2

12/(B11B22), b3 = B22/B66.

4. CONCLUSIONS

In this paper, a fully explicit secular equation of Rayleigh waves along an obliquely
cut surface in a directional fiber-reinforced composite has been derived by using the method
of first integrals. Based on it, the symmetry properties of the dependence of the Rayleigh
wave velocity on the orientation of the fiber direction, which were indicated in Refs. [5, 6]
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throught numerical studies, are proved. From the obtained explicit secular equation we
immediately derive the secular equation of the wave for the case when the cut surface is
parallel to the fiber direction, and it is much more simple than the ones obtained recently
by Cerv [5] and Cerv et al. [6]. Some approximate formulas for the Rayleigh wave speed for
the cases when the fiber direction is parallel or perpendicular to the edge of the composite
plate are established. It is shown that they are good approximations. The obtained explicit
secular equation and approximate formulas for the velocity would be useful in practical
applications.

ACKNOWLEDGMENTS

The work was supported by the Vietnam National Foundation For Science and
Technology Development (NAFOSTED) under Grant No. 107.02-2010.07.

REFERENCES

[1] Ohyoshi T., The propagation of Rayleigh waves along an obliquely cut surface in a directional
fibre-reinforced composite, Compos Sci Technol, 60, (2000), 2191 - 2196.

[2] Mozhaev V G., Some new ideas in the theory of surface acoustic waves in anisotropic media,
IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, edited
by Parker D F and England A H, Kluwer Acad Publ, (1995), 455 - 462.

[3] Destrade M., The explicit secular equation for surface acoustic waves in monoclinic elastic
crystals, J. Acoust Soc. Am., 109, (2001), 1398 - 1402.

[4] Pham Chi Vinh, Trinh Thi Thanh Hue, Dinh Van Quang, Nguyen Thi Khanh Linh and
Nguyen Thi Nam, Method of first integrals and interface and surface waves, Vietnam Journal
of Mechanics, VAST, 32(2) (2010), 107 - 120.

[5] Cerv J., The Influence of Material Properties on the Behaviour of Rayleigh Edge Waves in
Thin Orthotropic Media, Int. Rev. Mech. Eng. (IREME), 2, (2008), 762 - 772.

[6] Cerv J., Kroupa T., Trnka J., Influence of principal material directions of thin orthotropic
structures on Rayleigh-edge wave velocity, Composite Structures, 92, (2010), 568 - 577.

[7] Pham Chi Vinh, Explicit secular equations of Rayleigh waves in elastic media under the
influence of gravity and initial stress, Appl. Math. Comput., 215, (2009), 395 - 404.

[8] Pham Chi Vinh, Malischewsky P., An approach for obtaining approximate formulas for the
Rayleigh wave velocity, Wave Motion, 44, (2007), 549 - 562.

Received November 14, 2011


