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Abstract. This paper develops the cell-based (CS) smoothed finite element method for a
three-node plate finite element with a bubble node at the centroid of the element. Based
on the first-order shear deformation theory, the in-plane strains are smoothed on three
non-overlapped subdomains of the element to transform the numerical integration of the
element stiffness matrix from the surfaces into the lines of the subdomains. The shear-
locking phenomenon, which occurs when the plate’s thickness becomes small, is removed
by employing the mixed interpolation of tensorial components (MITC). The present el-
ement, namely CS-MITC3+, passes the patch test and behaves independently from the
sequence of node numbers of the element. Numerical results given by the CS-MITC3+ el-
ements are better than the MITC3+ elements. As compared to other smoothed three-node
plate finite elements, the CS-MITC3+ is a good competitor.

Keywords: Shear locking, MITC3+, cell-based smoothed technique, CS-MITC3+ plate
elements.

1. INTRODUCTION

Over past several decades, many plate finite elements have been developed to an-
alyze plate structures based on the Kirchhoff-Love and Reissner-Mindlin theories. To
apply for thin plates, the Kirchhoff-Love theory requires the C1-continuous approxima-
tions of the displacement fields to satisfy the condition of neglecting the transverse shear
strains. This C1-continuous requirement makes difficulty to build finite element approx-
imations. In contrast, the Reissner-Mindlin theory needs C0-continuous displacement
approximations because the theory considers the transverse shear strains. It means that
the Reissner-Mindlin theory can easily use approximations of isoparametric plate finite
elements. However, the Reissner-Mindlin plate elements encounter the difficulty of the
shear-locking phenomenon that occurs when the plate thickness approaches to zero.
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To overcome the shear-locking phenomenon, such techniques as the reduced and
selective integration [1], the discrete Kirchhoff theory (DKT) [2], the assumed strains [3],
the assumed natural strains (ANS) [4], the enhanced assumed strains (EAS) [5], the dis-
crete shear gap (DSG) [6], or the mixed interpolation of tensorial components (MITC) [7]
have been proposed. In which, the MITC technique is one of the most prominent ap-
proaches because of spatially isotropic behavior, no spurious zero energy mode and no
shear locking. According to the MITC technique, the transverse shear strains are sepa-
rately interpolated and connected to the displacement approximations at typing points
that are designed to satisfy the spatially isotropic behavior. The MITC technique has
been derived for 4-node (MITC4), 8-node (MITC8), 9-node (MITC9), 16-node (MITC16)
quadrilateral and 3-node (MITC3), 6-node (MITC6), 7-node (MITC7), 9-node (MITC9)
triangular plate/shell finite elements [8–12]. In recent years, the MITC technique have
been developed for the 4-node quadrilateral and 3-node triangular shell elements with a
bubble node, namely MITC4+ and MITC3+ respectively [13, 14].

With effort, Liu et al. [15] have proposed the smoothed finite element methods
(S-FEM), which average strain fields over domains defined within an element or over
adjacent elements sharing the common edges or nodes, respectively called the cell-based
(CS), the edge-based (ES) and the node-based (NS) finite element methods (FEM). These
approaches of the S-FEM have been successfully applied to improve accuracy of 2-dimen-
sional, 3-dimensional problems, plates and shells made of isotropic, composited or func-
tional graded materials [16–30], just mentioned a few. Particularly, the CS-, ES-, and NS-
FEM have been developed for the 3-node Reissner-Mindlin plate elements employing the
DSG technique to remove the shear locking, respectively called CS-DSG3, ES-DSG3 and
NS-DSG3 elements [21–23]. The displacement fields of the DSG3 elements are approxi-
mated by the standard C0-continuous shape functions. All the strain fields of the DSG3
elements, including the transverse shear strain modified by the DSG3 technique, are con-
stant over each element but the values of these strains are dependent on the sequence of
nodal numbering, meaning not spatially isotropic behavior. Therefore, when being sepa-
rately averaged on three non-overlapped subdomains defined by element nodes and the
centroid of the element, the strain fields of the CS-DSG3 elements are more accurate than
the DSG3 elements [21].

In this paper, the CS-FEM is developed for 3-node Reissner-Mindlin plate finite
elements that remove the shear-locking phenomenon by the MITC technique. Because of
spatially isotropic behavior, the displacements given by the standard C0-continuous plate
elements with MITC3 technique [11] for the shear-locking elimination will be unchanged
if the CS-FEM applied for the DSG3 are straightforwardly employed. By adding a bubble
shape function for the approximations of the displacements, the strain fields of the 3-
node plate elements with a bubble node are not constant. Using the CS-FEM, the in-
plane strain fields are averaged on each subdomain of the element. The average is done
by dividing integration of the in-plane strain fields over the subdomain’s area. The area
integration of the in-plane strains that contain derivatives of the shape functions are then
transformed into the integration on the edges of the subdomains by the Green’s theorem.
As a result, element stiffness matrices are numerically integrated on lines instead of on
surfaces and numerical errors caused by mesh distortion can be attenuated. To remove
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the shear-locking phenomenon, the MITC3+ technique [14] is employed to interpolate the
transverse shear strains that connect the displacement approximations at typing points.
The elements developed in this paper are called the CS-MITC3+ elements.

The paper is organized as follows. In the next section, the formulation of the CS-
MITC3+ elements is presented. In section 3, the robustness and accuracy of the displace-
ments and bending moments given by the proposed elements are evaluated through
static analyses of some plate problems. Conclusions are withdrawn in the last section.

2. CS-MITC3+ PLATE FINITE ELEMENTS

Consider a bending plate due to normal loads p as shown in Fig. 1(a). Denote h is
the thickness and Ω ⊂ R2 is the area of the neutral plane. Assume the material is isotropic
elastic and displacements of the plate are small. In the Cartesian coordinate system Oxyz,
in which the plane Oxy is coincident with the neutral plane, the displacements of the
first-order shear deformation plate are [31]

u = zβx (x, y) , v = zβy (x, y) , w = w (x, y) , (1)

in which, u, v, w are, respectively, the translational displacements along x-, y- and z-
axis; βx, βy are the rotations of vectors normal to the neutral plane about y- and x-axis,
respectively.

(a) (b)

Fig. 1. (a) Mindlin-Reissner plate; (b) a 3-node triangular plate element with a bubble node

The plate is discretized by 3-node triangular finite elements Ωe with a bubble node
at the centroid of the element. The displacements of the Mindlin-Reissner plate elements
are approximated as follows [14]

w =
3

∑
I=1

NIwI , βx =
4

∑
I=1

NIθyI , βy = −
4

∑
I=1

NIθxI , (2)

where wI , θxI , θyI are the deflection and rotations about x- and y-axis at node I of an
element with the positive directions defined in Fig. 1(b). NI are shape functions in the
natural coordinate system (ξ, η, ζ) that include the cubic function N4 corresponding to
the bubble node at the centroid of the element

N1 = 1− ξ − η − 1
3

N4 , N2 = ξ − 1
3

N4 , N3 = η − 1
3

N4 , N4 = 27ξη (1− ξ − η) (3)
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From Eqs. (1) and (2), the in-plane strains are

 εx
εy

γxy

 = z

 βx,x
βy,y

βx,y + βy,x

 = z



4

∑
I=1

NI,xθyI

−
4

∑
I=1

NI,yθxI

4

∑
I=1

NI,yθyI −
4

∑
I=1

NI,xθxI


= zBbde . (4)

Here de = [w1, θx1, θy1, w2, θx2, θy2, w3, θx3, θy3, θx4, θy4]
T are the nodal displacements of an

element and

Bb =

 0 0 N1,x 0 0 N2,x 0 0 N3,x 0 N4,x
0 −N1,y 0 0 −N2,y 0 0 −N3,y 0 −N4,y 0
0 −N1,x N1,y 0 −N2,x N2,y 0 −N3,x N3,y −N4,x N4,y

 . (5)

In the CS-MITC3+, the in-plane strains in each element are averaged over three
subtriangular domains Ωei of areas Aei that are defined by connecting element nodes and
the bubble node as demonstrated in Fig. 2. As a result, the in-plane smoothed strains are

[
ε̃x ε̃y γ̃xy

]T
= z

 3

∑
i=1

1
Aei

∫
Ωei

BbdΩ

de = z

(
3

∑
i=1

1
Aei

B̃bi

)
︸ ︷︷ ︸

B̃b

de = zB̃bde . (6)

(a) (b)

Fig. 2. (a) Mesh of the Mindlin-Reissner plate; (b) Definition of the
subtriangular domains of a CS-MITC3+

Applying the Green’s theorem, we have

B̃bi =
∫

Ωei

BbdΩ

=
3

∑
ed=1

∫
led

0 0 N1ned
x 0 0 N2ned

x 0 0 N3ned
x 0 N4ned

x
0 −N1ned

y 0 0 −N2ned
y 0 0 −N3ned

y 0 −N4ned
y 0

0 −N1ned
x N1ned

y 0 −N2ned
x N2ned

y 0 −N3ned
x N3ned

y −N4ned
x N4ned

y

dΓ.

(7)
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In which, led is the length of edge ed of subtriangle i; ned
x and ned

y are the direction cosines
of the unit vector ned normal to edge ed of subtriangle i as illustrated in Fig. 2(b).

The covariant transverse shear strains are [7]{
γξζ

γηζ

}
=

{
x,ξ · u,ζ + x,ζ · u,ξ
x,η · u,ζ + x,ζ · u,η

}
. (8)

Here, x, u are respectively the coordinate and displacement vectors of a point in the plate.
If we use the displacement approximations given in Eq. (2) to compute the trans-

verse shear strains in Eq. (8), the shear locking phenomenon will occur when the plate
thickness decreases to zero. To overcome this phenomenon, we employ the assumed
transverse shear strains designed for the continuum mechanics displacement-based shell
finite elements MITC3+ [14]. According to this technique, the assumed covariant trans-
verse shear strains are interpolated by{

γ̂ξζ

γ̂ηζ

}
=

2
3

{
γB

ξζ

γA
ηζ

}
− 1

3

{
γB

ηζ − γC
ξζ − γC

ηζ − ĉ (3η − 1)

γA
ξζ − γC

ξζ − γC
ηζ − ĉ (1− 3ξ)

}
, (9)

where ĉ =
(

γF
ξζ − γD

ξζ

)
−
(

γF
ηζ − γE

ηζ

)
and γA

ξζ , γA
ηζ , γB

ξζ , γB
ηζ , γC

ξζ , γC
ηζ , γD

ξζ , γE
ηζ , γF

ξζ , γF
ηζ are

the covariant transverse shear strains at typing points A, B, C, D, E and F with the coor-
dinates given in Fig. 3. These covariant transverse shear strains are computed by substi-
tuting the displacement approximations in Eq. (2) into Eq. (8) and obtaining the values at
the tying points. Therefore, expressing the assumed covariant transverse shear strains
in terms of nodal displacements and transforming them into the global coordinates,
we obtain [

γ̂xz γ̂yz
]T

= B̂sde , (10)

in which, γ̂xz, γ̂yz are the assumed transverse shear strains in the global coordinates, B̂s is
the strain-displacement matrix.

Fig. 3. Coordinates of typing points in the natural coordinates [14]

Using the smoothed in-plane strains in Eq. (6) and the assumed transverse shear
strains in Eq. (10), the principle of virtual work for the CS-MITC3+ plate finite elements
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with the stabilized transverse shear strains [32] can be written

∫
Ωe

 h/2∫
−h/2

(
δdT

e B̃T
b zCbzB̃bde

)
dz

dΩ + κ
∫

Ωe

 h/2∫
−h/2

(
δdT

e B̂T
s C∗s B̂sde

)
dz

dΩ =
∫

Ωe

δwpdΩ

⇔
∫

Ωe

δdT
e B̃T

b DbB̃bdedΩ +
∫

Ωe

δdT
e B̂T

s D∗s B̂sdedΩ =
∫

Ωe

δdT
e NT pdΩ

⇔
(

k̃b
e + k̂s

e

)
︸ ︷︷ ︸

ke

de = fe ⇔ kede = fe . (11)

Here, ke = k̃b
e + k̂s

e , kb
e =

∫
Ωe

B̃T
b DbB̃bdΩ, k̂s

e =
∫

Ωe

B̂T
s D∗s B̂sdΩ, fe =

∫
Ωe

NT pdΩ with

Db =

h/2∫
−h/2

zCbzdz =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2


︸ ︷︷ ︸

Cb

h/2∫
−h/2

z2dz =
Eh3

12 (1− ν2)︸ ︷︷ ︸
D

 1 ν 0
ν 1 0
0 0 1−ν

2

 ,

D∗s =

h/2∫
−h/2

κC∗s dz = κ
h2

h2 + αh2
e

E
2 (1 + ν)

[
1 0
0 1

]
︸ ︷︷ ︸

C∗s

h/2∫
−h/2

dz =
κh3

h2 + αh2
e

E
2 (1 + ν)

[
1 0
0 1

]
,

N =
[

N1 0 0 N2 0 0 N3 0 0 0 0
]

,

and E is the Young’s modulus; ν is the Poisson’s ratio; D = Eh3/[12(1− ν2)]; κ = 5/6 is
the shear correction factor; he is the longest length of the element sides; α is the stabilized
parameter.

Static condensation is carried out on the element level for the rotational displace-
ments of the bubble node. Therefore, the expression for Eq. (11) can be derived in terms
of the nodal displacements at the vertices of the elements as follows ke
(9×9)

keb
(9×2)

kbe
(2×9)

kb
(2×2)


︸ ︷︷ ︸

ke


d̄e

(9×1)

db
(2×1)

︸ ︷︷ ︸
de

=


f̄e

(9×1)

0
(2×1)

︸ ︷︷ ︸
fe

⇔
{

ked̄e + kebdb = f̄e
kbed̄e + kbdb = 0 ⇒

{
ked̄e + keb

(
−k−1

b kbed̄e

)
= f̄e

db = −k−1
b kbed̄e

or (
ke − kebk−1

b kbe

)
︸ ︷︷ ︸

k̄e

d̄e = f̄e ⇔ k̄ed̄e = f̄e . (12)

Following the standard finite element procedure, we can obtain the equilibrium
equation of the plate

Kd = F. (13)



A cell-based smoothed three-node plate finite element with a bubble node for static analyses of both thin and thick plates 235

In which, K and F are respectively the global stiffness and force matrices assembled from
the matrices of element stiffness k̄e and force f̄e; d is the nodal displacements of the plate.
Solving Eq. (13), we get the nodal displacements d and from d we can compute internal
resultant forces of the plate.

3. NUMERICAL RESULTS

This section reports performance of the proposed elements upon basic tests and
popular plate problems. The robustness and efficiency of the CS-MITC3+ elements are
compared with other CS-DSG3 [21], ES-DSG3 [22], MITC3+ [14] and MITC4 [8] plate
elements. Numerical investigations done by [32] shown that the stabilized parameter in
range 0 < α < 0.2 reduces L2-error of deflection, moment and shear force as compared to
those given by the MITC4 elements with α = 0 for both simply supported and clamped
plates. Here, the stabilized parameter α = 0.1 is chosen similarly to results provided by
CS-DSG3 and ES-DSG3 [21]. Young’s modulus E = 10.92 and Poisson’s ratio ν = 0.3 are
used for the plate material in all numerical examples.

3.1. Isotropic element test
Consider a 0.01 thick plate discretized by one CS-MITC3+ element with three dif-

ferent nodal numbering sequences as demonstrated in Fig. 4. The plate is fixed at two
nodes and loaded at the other node with FI = [P Mx My]T = 10−6[1 2 0.5]T. Nu-
merical results in Tab. 1 show that the displacements are identical in the three cases of
nodal numbering sequences. Therefore, the CS-MITC3+ elements pass the isotropic ele-
ment test.

(a) (b) (c)

Fig. 4. Geometry, boundary, load and nodal numbering sequences for the isotropic element test

Table 1. Displacement results of the CS-MITC3+ isotropic element test

Nodal numbering w θx θy

Case (a) 5.8519 6.2250 1.6751
Case (b) 5.8519 6.2250 1.6751
Case (c) 5.8519 6.2250 1.6751
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3.2. Patch test
A patch test with nodal coordinates and prescribed deflection w = (1 + x + 2y +

x2 + xy + y2)/2 [22] as shown in Fig. 5 is used to testify if the CS-MITC3+ elements are
able to reproduce the displacements and internal forces. Assume the thickness is 0.01.
Applying prescribed displacements computed from w on the boundary nodes (node 1
to 4), the responses at node 5 given by CS-MITC3+ elements are listed in Tab. 2. Obvi-
ously, these responses are the same as the exact solutions, meaning that the CS-MITC3+
elements pass the patch test.

Fig. 5. Nodal coordinates of a mesh for the patch test

Table 2. Patch test results

w5 θx5 θy5 Mx5 × 10−5 My5 × 10−5 Mxy5 × 10−5

CS-MITC3+ 0.6422 1.1300 −0.6400 −0.1300 −0.1300 −0.0350
Exact 0.6422 1.1300 −0.6400 −0.1300 −0.1300 −0.0350

3.3. Simply supported square plate
Consider a simply supported square plate subjected to uniform distributed loads

p = 1. Assume the length of the plate L = 1 and L/h = 1000 or 10, equivalent to a thin
or thick plate. Due to symmetry, a quarter of the plate is regularly discretized by Nx ×Ny
elements, in which Nx = Ny = 2, 4, 6, 8, 10, 12 are number of the elements on edges in x-
and y-direction of the plate, respectively.

Fig. 6 presents the relation between the relative errors of the central deflection,
which are given by the CS-MITC3+ and other elements, and the length of element size
in the logarithm scale. As shown in Fig. 6, the convergence rates of these elements are
similar but the accuracy provided by the CS-MITC3+ elements is better than the other
three-node plate elements in cases of the thin and thick plates.

Nondimensional moments Mc/(pL2/10), in which Mc is the moment at the plate
center, computed by the different elements against the different mesh densities Nx × Ny
are listed in Tab. 3. The Tab. 3 also provides the relative errors of the central moments
when the mesh Nx = Ny = 12 is used. Compared with the CS-DGS3, ES-DSG3, MITC3+,
the CS-MITC3+ gives better results for both thin and thick plates. However, the central
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deflection and moment of CS-MITC3+ are worse than the MITC4 elements, which use
bilinear shape functions for the displacement approximations.

(a) (b)

Fig. 6. Convergence rate of deflections at the plate center

Table 3. Nondimensional moment Mc/(pL2/10) at the plate center

L/h Elements
Mesh Nx × Ny Relative Analytical

2× 2 4× 4 6× 6 8× 8 10× 10 12× 12 error (%) results [33]

1000

CS-MITC3+ 0.3827 0.4575 0.4701 0.4742 0.4760 0.4769 0.42

0.4789
CS-DSG3 0.3721 0.4527 0.4673 0.4724 0.4747 0.4760 0.61
ES-DSG3 0.3687 0.4559 0.4692 0.4735 0.4755 0.4766 0.48
MITC3+ 0.3822 0.4577 0.4702 0.4742 0.4760 0.4770 0.40
MITC4 0.4075 0.4612 0.4710 0.4745 0.4761 0.4769 0.42

10

CS-MITC3+ 0.3833 0.4573 0.4699 0.4741 0.4759 0.4769 0.42

0.4789
CS-DSG3 0.3754 0.4533 0.4675 0.4725 0.4748 0.4760 0.61
ES-DSG3 0.3895 0.4591 0.4701 0.4740 0.4757 0.4767 0.46
MITC3+ 0.3834 0.4574 0.4699 0.4740 0.4759 0.4769 0.42
MITC4 0.4075 0.4612 0.4710 0.4745 0.4761 0.4769 0.42

The limit where the present element can be free from the shear locking is investi-
gated by computing the central deflection of the plate with the length-to-thickness ratio
L/h ranging from 103 to 108. As shown in Tab. 4, when using the mesh Nx = Ny = 12,
the CS-MITC3+ element and other smoothed plate elements like CS-DSG3, ES-DSG3 can
give reasonable results until L/h = 108 while the limits of L/h for MITC3+ and MITC4
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are 104 and 105, respectively. It means that the proposed CS-MITC3+ can remove the
shear locking very well.

Table 4. Nondimensional deflections at the plate center corresponding to L/h from 103 to 108

Elements
L/h Analytical

103 104 105 106 107 108 results [33]
CS-MITC3+ 0.4057 0.4057 0.4057 0.4057 0.4057 0.4057

0.4062
CS-DSG3 0.4048 0.4048 0.4048 0.4048 0.4048 0.4048
ES-DSG3 0.4049 0.4049 0.4049 0.4049 0.4049 0.4049
MITC3+ 0.4053 0.4053 0.4047 0.3546 0.0342 0.0012
MITC4 0.4060 0.4060 0.4060 0.4058 0.3941 0.2095

3.4. Morley’s skew plate
Consider the simply supported Morley’s skew plate of geometry and the ratio

L/h = 100 as shown in Fig. 7. The plate is subjected uniformed distributed loads p = 1.

Fig. 7. Geometries, boundary conditions and
4× 4 meshes of the Morley’s skew plate

Fig. 8. Nondimensional deflections
1000wc/(pL4/D) at the center of the

Morley’s plate

Regular meshes N × N, in which N = 4, 8, 12, 16, 20, 24 are number of elements on
each edge of the plate, are used to discretize the plate. Fig. 8 and Tab. 4 respectively show
results of nondimensional deflection 1000wc/(pL4/D) and moments at the plate center
given by the CS-MITC3+ and the other elements using the different meshes. Compared
with the original MITC3+ elements, the results provided by the CS-MITC3+ elements are
greatly improved. The CS-MITC3+ elements also give results similar to other such strain
smoothed elements as CS-DSG3 and ES-DSG3, and better than MITC4.
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Table 5. Normalized principal moments 100Mc/(pL2) at the center of the Morley’s plates

Elements
Mesh N × N Relative Analytical

4× 4 8× 8 12× 12 16× 16 20× 20 24× 24 error (%) results [34]
Normalized maximum principal moment
CS-MITC3+ 1.4794 1.7712 1.8338 1.8570 1.8686 1.8758 1.79

1.9100
CS-DSG3 1.4773 1.7683 1.8313 1.8548 1.8668 1.8742 1.87
ES-DSG3 1.6401 1.8333 1.8915 1.9237 1.8811 1.8884 1.13
MITC3+ 1.3125 1.5854 1.6834 1.7383 1.7742 1.7996 5.78
MITC4 1.5097 1.6756 1.7608 1.8116 1.8425 1.8629 2.47

Normalized minimum principal moment
CS-MITC3+ 0.6199 0.8742 0.9685 1.0118 1.0341 1.0469 3.06

1.0800
CS-DSG3 0.6194 0.8729 0.9670 1.0103 1.0327 1.0456 3.19
ES-DSG3 0.7384 0.9016 0.9952 1.0509 1.1398 1.1576 7.19
MITC3+ 0.5182 0.7441 0.8431 0.9004 0.9385 0.9659 10.56
MITC4 0.6738 0.8590 0.9424 0.9923 1.0222 1.0421 3.51

In comparison with the lower bound solutions of the square and circular plates, see
Tab. 3 and Tab. 6, the numerical results of the Morley’s skew given by the CS-MITC3+ are
upper bound. An intuitive explanation on the reason is that averaging strain fields over
subdomains of the CS-MITC3+ elements overestimates the very high gradient of exact
strain fields within elements at the acute angles of the skew plate.

3.5. Circular plate
Give a clamped circular plate of radius R and thickness h as illustrated in Fig. 9(a).

Consider R/h = 50 or 5 for the thin or thick plate respectively. The plate is applied
uniform distributed loads p = 1. Due to symmetry, we model and mesh one quarter of
the plate by Nx × Ny elements, in which Nx = Ny = 2, 4, 6, 8, 10, 12 as shown in Fig. 9(b)
for Nx = Ny = 4.
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(a) Geometry, boundary and load of the circular plate (b) Symmetric model and NxxNy=4x4 mesh 

Fig. 9. Clamped circular plate subjected to a uniform distributed load and finite element model 

As shown in Fig. 10, for the thin and thick plates the central deflections given by the CS-

MITC3+ are more accurate than those of CS-DSG3, ES-DSG3 and MITC3+ and similar to MITC4. 

However, Table 6 shows that the central moments in the finest mesh (NxxNy = 12x12) provided by CS-

MITC3+ are the same as MITC3+, CS-DSG3 but not as good as the results given by MITC4, ES-

DSG3 elements. 
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Fig. 10. Deflections at the center of the clamped circular plate 
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intuitive explanation on the reason is that averaging strain fields over subdomains of the CS-MITC3+ 

elements overestimates the very high gradient of exact strain fields within elements at the acute angles 

of the skew plate. 

3.5. Circular plate 

Give a clamped circular plate of radius R and thickness h as illustrated in Fig. 9a. Consider R/h 

= 50 or 5 for the thin or thick plate respectively. The plate is applied uniform distributed loads p = 1. 

Due to symmetry, we model and mesh one quarter of the plate by NxxNy elements, in which Nx = Ny = 

2, 4, 6, 8, 10, 12 as shown in Fig. 9b for Nx = Ny = 4. 

 

 
 

(a) Geometry, boundary and load of the circular plate (b) Symmetric model and NxxNy=4x4 mesh 

Fig. 9. Clamped circular plate subjected to a uniform distributed load and finite element model 

As shown in Fig. 10, for the thin and thick plates the central deflections given by the CS-

MITC3+ are more accurate than those of CS-DSG3, ES-DSG3 and MITC3+ and similar to MITC4. 

However, Table 6 shows that the central moments in the finest mesh (NxxNy = 12x12) provided by CS-

MITC3+ are the same as MITC3+, CS-DSG3 but not as good as the results given by MITC4, ES-

DSG3 elements. 

 

  

(a) R/h = 50 (b) R/h = 5 

Fig. 10. Deflections at the center of the clamped circular plate 

 

 

 

(b) Symmetric model and Nx × Ny = 4× 4 mesh

Fig. 9. Clamped circular plate subjected to a uniform distributed load and finite element model
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As shown in Fig. 10, for the thin and thick plates the central deflections given by
the CS-MITC3+ are more accurate than those of CS-DSG3, ES-DSG3 and MITC3+ and
similar to MITC4. However, Tab. 6 shows that the central moments in the finest mesh
(Nx × Ny = 12× 12) provided by CS-MITC3+ are the same as MITC3+, CS-DSG3 but not
as good as the results given by MITC4, ES-DSG3 elements.

(a) R/h = 50 (b) R/h = 5

Fig. 10. Deflections at the center of the clamped circular plate

Table 6. Moments at the center of the clamped circular plates

R/h Elements
Mesh Nx × Ny Relative Analytical

2× 2 4× 4 6× 6 8× 8 10× 10 12× 12 error (%) results [35]

50

CS-MITC3+ 1.3621 1.8571 1.9556 1.9901 2.0061 2.0146 0.82

2.03125
CS-DSG3 1.3326 1.8517 1.9559 1.9912 2.0059 2.0145 0.82

ES-DSG3 1.1736 1.8182 1.9523 1.9917 2.0061 2.0156 0.77

MITC3+ 1.3597 1.8575 1.9555 1.9900 2.0060 2.0145 0.82

MITC4 1.8818 1.9404 2.0036 2.0127 2.0232 2.0255 0.28

5

CS-MITC3+ 1.3630 1.8538 1.9545 1.9899 2.0060 2.0146 0.82

2.03125
CS-DSG3 1.3459 1.8517 1.9558 1.9913 2.0059 2.0145 0.82

ES-DSG3 1.2667 1.8513 1.9680 2.0003 2.0197 2.0256 0.28

MITC3+ 1.3664 1.8549 1.9549 1.9900 2.0061 2.0146 0.82

MITC4 1.8350 1.9541 1.9949 2.0113 2.0232 2.0255 0.28
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4. CONCLUSIONS

In this paper, the CS-FEM has been developed for three-node plate finite elements
with a bubble node based on the first-order shear deformation theory. The in-plane
strains are smoothed over non-overlapped subdomains of elements to transform the nu-
merical integration of the element stiffness matrices from surfaces into lines. The trans-
verse shear strains are interpolated by the MITC3+ technique to remove the shear-locking
phenomenon.

The numerical tests shown that the CS-MITC3+ elements are free of the shear lock-
ing, spatially isotropic behaviour and pass the patch test. By employing the CS-smoothed
technique, the CS-MITC3+ elements give more accurate displacements and bending mo-
ments than those given by the MITC3+ elements, especially in the skew Morley’s plate.
The numerical results of static analyses for both thin and thick plates also demonstrated
that the CS-MITC3+ are good competitor as compared to such smoothed three-node plate
elements as CS-DSG3 and ES-DSG3, which use the DSG technique for the shear-locking
removal. Moreover, in spite of using only three-node, the CS-MITC3+ elements can give
numerical results, especially in very thin plates, similar to or better than the four-node
MITC4 elements. The present three-node plate elements with explicitly constant mem-
brane and bending strains are useful for solving time-consuming problems with compli-
cated geometry.
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