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Abstract. In this paper, numerical and experimental studies for crack detection of struc-
tures using “element stiffness index distribution” are presented. The element stiffness
index distribution is defined as a vector of norms of sub-matrices corresponding to el-
ement stiffness matrices calculated from the reconstructed global stiffness matrix of the
beam. When there is a crack at an element, the element stiffness index of that element will
be changed. By inspecting the change in the element stiffness index distribution, the crack
can be detected. A significant peak in the element stiffness index distribution is the indica-
tor of the crack existence. The crack location is determined by the location of the peak and
the crack depth can be determined from the height of the peak. The global stiffness matrix
is calculated from the measured frequency response functions instead of mode shapes to
avoid limitations of the mode shape-based methods for crack detection. Numerical simu-
lation results for the cases of beam-like structures are provided. The experiment is carried
out to justify the efficiency of the proposed method.

Keywords: Crack detection, damage detection, multi-cracks detection, stiffness method,
element stiffness, element stiffness index distribution.

1. INTRODUCTION

The subject of structural crack detection has attracted many researches in the last
three decades [1]. When there are cracks, the dynamic properties such as frequency and
mode shape are changed. The changes in dynamic properties of structures are very use-
ful for crack detection [2]. Many of the studies for crack detection were concentrated
on the analysis of natural frequency in the case of open crack for simplification reasons.
Liang et al. [3] proposed theoretical relationships between eigenfrequency changes and
magnitudes, and the locations of crack-induced damage for beam structures with dif-
ferent boundary conditions. Hu and Liang [4] presented an integrated method using
the change in natural frequency for crack detection. In this work, the spring model and
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continuum damage model were combined to analyze crack positions and crack depths.
Ruotolo and Surace [5] proposed a multi-crack detection method using finite element
model of the structure and genetic algorithms. A crack detection approach based on the
minimization of the difference between measured data and a computational model of
a beam-type structure was proposed by Shen and Taylor [6]. Some authors [7, 8] mod-
eled cracks as massless rotational springs, whose stiffness were calculated using fracture
mechanics to study the natural frequencies and mode shapes of cracked beams.

Although the natural frequency can be obtained easily for detecting the existence
of cracks, however, it is difficult for determining the location of cracks. Meanwhile, the
mode shape is distorted locally at the crack location and it can be used for localizing the
crack. Some authors applied successfully mode shapes for crack detection. Kisa et al. [9]
presented a method for free vibration analysis of cracked beams using a combination of
finite elements and component mode synthesis methods. Pandey et al. [10] presented the
damage detection method using mode shape curvature. The reduction in cross section
caused by the damage leads to an increase in the curvature of the mode shapes in the
vicinity of the damage. In other papers [11, 12], the change in curvature of mode shapes
was used to determine the location of the crack. Some other used stiffness and flexibility
matrices of structures obtained from mode shapes for crack detection purpose since these
matrices are related directly to cracks in structures. Pandey and Biswas [13] presented a
method for crack detection based on the difference between the flexibility matrices of the
undamaged and damaged structures. Jaishi and Ren [14] used modal flexibility residual
for damage detection. Recently, Caddemi and Caliò [15] proposed the method to localize
the exact multiple cracks using frequency and mode shape measurements. However, the
mode shape-based methods for crack detection have some limitations. The local change
in a mode shape caused by a crack is very small and it can only be inspected visually with
a very large crack depth [8,16]. There will be an error in the stiffness and flexibility matri-
ces calculated from mode shapes since only some fundamental modes can be measured
with a high accuracy in practice.

To overcome this issue, a method for crack detection using “stiffness index distri-
bution” which is obtained from the measured frequency response functions, not from the
mode shapes as the previous methods to avoid the above limitations of the mode shapes,
has been proposed by the authors of this paper [17]. The numerical simulation results
obtained by the proposed method were promising. However, no validation by the ex-
periment has been carried out and the applied structures in this case studies were very
simple. In this paper, the numerical study for a more complex structure using the “stiff-
ness index distribution” method is presented. The experiment is carried out to justify
the proposed method. Good agreement is obtained between numerical and experimental
results.

2. ELEMENT STIFFNESS INDEX DISTRIBUTION

In finite element model the governing equation of a beam-like structure can be
written as follows

Mÿ(t) + Cẏ(t) + Ky(t) = f̃(t), (1)
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where f̃ = ∑
e

TT
e f; f =

∫
Le

NT
e fedx; M, C and K are structural mass, damping and stiffness

matrices; f is the excitation force; NT
e is the transposition of the shape functions at the

position x of the interaction force; y is the nodal displacement of the beam.
The concept of “element stiffness index distribution” is briefly presented here,

more details can be found in the previous work [17]. If the ith element stiffness matrix is
denoted as

Ki
e =


ki

11 ki
12 ki

13 ki
14

ki
21 ki

22 ki
23 ki

24

ki
31 ki

32 ki
33 ki

34

ki
41 ki

42 ki
43 ki

44

 , (2)

then any sub-matrix in the global stiffness matrix K can be expressed as follows
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This sub-matrix is constructed mainly from the ith element stiffness matrix with
some additional components of the (i− 1)th and (i + 1)th element stiffness matrices. Since
the sub-matrix K̃i

e reflects the local stiffness, its norm should serve as a good local indica-
tion of its stiffness condition. Therefore, the change in norm of the sub-matrix K̃i

e can be
related to the change in the element stiffness, or in other words, it can be related to the
damage at the ith element. In order to detect the change in norm of the sub-matrix K̃i

e from
the global stiffness matrix, we define an element stiffness index distribution as follows

Λ = [λ1 λ2 . . . λQ] , (4)

where λi = norm
(

K̃i
e

)
is called the ith element stiffness index; Q is the number of finite

elements. When there is no crack the element λi is the same for every intact element.
However, when there is a crack at the ith element, λi will be changed while the other sub-
matrices remain the same. Therefore, the element stiffness index distribution is expected
to have a significant change at the ith element.

The global stiffness matrix can be reconstructed from Eq. (1) in the frequency do-
main as follows

KH(ω) = L + ω2MH(ω)− iωCH(ω), (5)

where H (ω) = [H1 H2 . . . Hn]T is a vector of measured frequency response functions
at frequency ω obtained by acting as an external force at the fixed kth degree of freedom
with the response signals being measured at all of the degrees of freedom. L is a constant
vector with the kth component equal to unity and the other components equal to zero. It
is assumed that the crack only influences the stiffness matrix but it does not influence the
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mass and damping matrices. Thus, we can consider that H, M and C are known, then the
stiffness matrix K can be calculated step by step from (5) as follows.

In the finite element method, the matrix K has only four non-zero components in
each row of the first and the last two rows. While, there are six non-zero components in
the middle of K. The components in the first row of K are obtained from the following
equation

K̂1 = A−1
1 B1 , (6)

where
K̂1 = (k11 k12 k13 k14)

T ,
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
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(7)

and kij, mij, cij, Li(ωj), Hi(ωj) are the components of K, M, C, L and H, respectively. Sim-
ilar procedure is applied for the next rows of K.

3. REGULARIZATION

When the measured signals are contaminated by noise, both A and B in Eq. (6)
will contain errors and these equations subsequently become ill-conditioned problem.
Therefore, we need to apply regularization methods which are available in published
literature. One of the most popular methods is Tikhonov regularization [18].

It is noted that the noise in Eq. (6) comes mainly from the frequency response func-
tion H. Therefore, it is important to filter out the noise of H before applying the regular-
ization. In this scenario the truncated singularity value decomposition method (TSVD)
can be applied to reduce the noise in H. The matrices U, S, V are first decomposed from
matrix H so that

H = USVT. (8)
In discrete ill-posed problems, the singular values of the matrix H decay gradually

to zero. The largest singularity values correspond to the smooth components of H while
the smaller values correspond to the noise in H. Therefore, in order to filter out the noise
the tiny positive singular values are set to zero [19]

σi =

{
σi , i ≤ λ
0 , otherwise (9)
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where σi is the singularity of matrix S. λ is chosen so that σλ � σλ+1. The matrix H is
then reconstructed from (8).

After filtering out the noise from H, the Tikhonov regularization method is applied
to solve Eq. (6). Tikhonov regularization method used to solve the problem is denoted as

min
x∈Rn

{
‖Ax− B‖2 +

∥∥Lµx
∥∥2
}

, (10)

where Lµ ∈ Rm×n, m ≤ n, is called the regularization matrix. In this study m and n are the
dimensions of A in Eq. (10) and m = n. The scalar µ > 0 is known as the regularization
parameter. The standard form of Tikhonov regularization takes Lµ = µI, where I is the
unit matrix. When singularity value decomposition (SVD) of A is available, i.e. A =
USVT, the explicit solution of (10) is given by

x = V
(

STS + µ2I
)−1

STUTB. (11)

In order to find µ, the norm ‖e‖ = ε of the error in B is first estimated from the
simulation solution xµ and the measurement x, then µ will be chosen so that∥∥Axµ − B

∥∥ ≤ ηε, (12)

where η > 1 is user-specified constant which is independent of ε. η = 1 means to find the
exact parameter µ which may not always happen in practice since the measurement noise
is random. Meanwhile, η � 1 will lead to the inaccuracy of parameter µ. Therefore, η
will be chosen based on a particular problem. Finally, parameter µ is calculated from the
following equation

n

∑
j=1

(
σ2

j

σ2
j + µ2

− 1

)2

b2
j = η2ε2 , (13)

4. NUMERICAL SIMULATION

A numerical example of a slender symmetric structure acted at the middle point by
the force in the X-direction as presented in Fig. 1 is investigated. The frequency response
functions in the X-direction are obtained along the structure. This structure consists of
four columns and braced elements with the dimensions of 0.25 m × 0.25 m × 3.6 m. The
columns and braced elements of this structure are modelled as frame elements in the
finite element analysis. The cross section of column and braced elements are 0.02 m ×
0.02 m and 0.02 m × 0.002 m, respectively. The material properties of the elements are:
mass density ρ = 7855 kg/m3; modulus of elasticity E = 2.1× 1011 N/m2. The number
of elements used in this simulation is 240. Each column is divided by 36 elements. It is
assumed that there is a crack located at the 17th element in column #1. Here, the elements
in column #1 are numbered ascendantly from the bottom to the top of the structure. The
stiffness matrix of the cracked element is adopted from [20]. Five levels of the crack
depth ranging from 10% to 50% are investigated. These five cases are numbered as in
Tab. 1. With this configuration of the force and the measurement points, the slender
symmetric structure can be considered equivalently as a cantilever beam-like structure
and the proposed method is then applied for crack detection.
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Fig. 1. The high slender structure model. 
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Fig. 1. The high slender structure model

Table 1. Five cases with cracks of varying depths at the crack position

Case Crack depth (%)
1 10
2 20
3 30
4 40
5 50

In this case study, the stiffness matrix K is reconstructed from the finite element
matrices M, C and simulation frequency response functions H obtained from 36 measure-
ment points along column #1. The element stiffness index distribution is then calculated
from Eqs. (4) and (6). Fig. 2 presents the normalized element stiffness index distribution
calculated from the reconstructed matrix K with five levels of the crack depth. As can
be seen from this figure, there is a clear peak in the element stiffness index distribution
at the 17th element for every level of the crack. It can also be observed from Fig. 2 that,
when the crack depth increases, the peak in the element stiffness index distribution be-
comes sharper. One can define the height of peak dh as the difference between the values
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(a) (b)

(c) (d)

(e)

Fig. 2. Reconstructed element stiffness index distribution, element #17 is cracked: a) crack depth
10%; b) crack depth 20%; c) crack depth 30%; d) crack depth 40%; e) crack depth 50%

at the top and the bottom of the peak. Clearly, when the crack depth increases, the height
of the peak increases. Therefore, the height of the peak in the element stiffness index
distribution can be considered as an intensity factor which relates the change in the ele-
ment stiffness index distribution at the cracked element to the crack depth. Establishing
a graph of the height of the peak versus crack depth from Fig. 2, a relationship between
the height of the peak (or intensity factor) and crack depth is obtained as shown in Fig. 3.
It can be seen that this relationship is a straight line. This relationship is useful for crack
depth estimation.

It is noted that the accuracy of the detected crack position depends on the num-
ber of measurement points since only the cracked element is determined, not the crack
position. However, the accuracy of the crack position can be improved by repeating the
proposed method on the crack area with more measurement points. Once the cracked el-
ement has been detected, the proposed method can be applied again to only the cracked
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Fig. 3. The height of the first peak versus crack depth

element to determine the more accurate position of crack. This implies that, in practice
the proposed method can be used as a first step to detect the crack existence and the
crack area. The more intensive investigation on the crack area can be made by repeat-
ing the proposed method with more measurement points to determine the more accurate
position of crack.

5. EXPERIMENTAL VALIDATION

In order to justify the application of the proposed method in practice, a symmetric
steel structure was made in the laboratory of the Institute of Mechanics, Vietnam Acad-
emy of Science and Technology as seen in Fig. 4. The global dimensions of the structure
are 0.25 m × 0.25 m × 3.6 m. This structure consists of 4 columns connected rigidly
together by 144 braced elements. The cross section of column and braced elements are
0.02 m × 0.02 m and 0.02 m × 0.002 m, respectively. The vibration instrument system
is incorporated into the experimental set up as presented in Fig. 5. The vibration instru-
ment system consists of the Bruel & Kjaer Pulse instrument for measuring vibration data
and Pulse Labshop software for analysing frequency response functions. The crack was
made by a saw at the 17th element in column #1. Five levels of the crack from zero to 50%
have been made as can be seen from Fig. 4. These five levels of the crack are presented in
Tab. 1.

In this experiment, the frequency response functions were measured by using one
hammer and one vibration transducer. The force was applied at a fixed node while the
vibration transducer moved along column #1 as can be seen from Fig. 5. Column #1 is di-
vided by 36 equal elements. The frequency response functions were obtained at 36 nodes
along column #1. The element stiffness matrix index distribution was then established
from these 36 measured frequency response functions by the proposed method.

The experimental results show that there are clear peaks in the element stiffness
index distributions of column #1 at the 17th element with different crack depths as pre-
sented in Fig. 6. The significant peak in the element stiffness index distribution explains
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Fig. 4. Experiment in the laboratory of the Institute of Mechanics – Vietnam Academy of 

Science and Technology: a) The steel high slender structure; b) Crack was made by a saw. 
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Fig. 4. Experiment in the laboratory of the Institute of Mechanics – Vietnam Academy of Science
and Technology: a) The steel high slender structure; b) Crack was made by a saw
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Fig. 5. Measurement of frequency response functions by PULSE system: a) B&K Pulse instrument;
b) Vibration measurement of the structure acted by hammer
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that there is a change in the stiffness of the 17th element which is the cracked element.
Therefore, the peak in the element stiffness index distribution indicates the existence of
the crack, and the position of the peak points out the crack location. As can be seen from
Fig. 6, when the crack depth increases from 10 % to 50 %, the peak at the crack position
becomes more significant. This means that when the crack depth is larger the proposed
method is more efficient for crack detection.

In order to validate the proposed method for the estimation of crack depth, the re-
lationships between the height of the peak and crack depth in the two cases of simulation
and experiment results are presented in the same graph as shown in Fig. 7. It can be ob-
served from Fig. 7 that the relationship between the height of the peak and crack depth
in the two cases are similar. Clearly, the simulation and the experimental results are in
good agreement to show the applicability of the proposed method in practice.

(a) (b)

(c) (d)

(e)

Fig. 6. Reconstructed element stiffness index distribution, element #12 is cracked: a) crack depth
10%; b) crack depth 20%; c) crack depth 30%; d) 40%; e) 50%
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Fig. 7. The height of the first peak versus crack depth

6. CONCLUSIONS

In this paper, a method using “element stiffness index distribution” for crack de-
tection of a beam-like structure is presented. The element stiffness index distribution is
reconstructed directly from frequency response functions instead of the mode shapes to
avoid some limitations of the mode shape-based method for crack detection. Inspecting
the change in the element stiffness index distribution, the crack is detected.

The existence of a crack is detected by the significant peak in the element stiffness
index distribution. The crack position is determined by the location of the peak. The
crack depth can be evaluated from the relationship between the height of peak in the
element stiffness index distribution and crack depth. The experiment has been carried
out to show that the proposed method can be applied for beam-like structures in practice.

However, the proposed method has its limitation. The accuracy of the detected
crack position depends on the number of measurement points since only the cracked
element is determined, not the crack position. In order to improve the accuracy of the
method more intensive investigation can be made on the crack area. Once the cracked el-
ement has been detected, the proposed method can be carried out on the cracked element
with more measurement points to determine the more accurate position of crack.
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