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Abstract. The elasto-plastic analysis of functionally graded (FG) metal-ceramic beams un-
der mechanical loading by using the finite element method is presented. A bilinear stress-
strain relation with isotropic hardening is assumed for elasto-plastic behaviour of metal,
and the effective elasto-plastic properties of the functionally graded material are evalu-
ated by using Tamura-Tomota-Ozawa (TTO) model. A nonlinear beam element based
on the classical beam theory is formulated and employed in the analysis. The element
employed nonlinear von Kámán strain-displacement relationship is derived by using the
neutral surface as reference plane. The layer beam approach, in which the plastic rate
equation is solved at Gauss points, is adopted in updating the stress and evaluating the
element nodal force vector and tangent stiffness matrix. Numerical examples are given to
show the accuracy of the derived formulation and to illustrate the effect of the material
distribution and plastic deformation on the behavior of the beams. The formation and
propagation of plastic zone during the loading process is also examined and highlighted.

Keywords: FG beam, elasto-plastic analysis, bilinear model, finite element method.

1. INTRODUCTION

Functionally graded materials (FGMs) have received much attention from
researchers since they were first initiated by Japanese scientists in 1984. FGMs are pro-
duced by varying gradually volume fraction of constituent materials, usually ceramics
and metals, in one or more desired spatial directions. The effective properties of the
resulted materials exhibit continuous change, and this enables FGMs to overcome the
drawbacks such as delamination and stress concentration, which are often met in the
multi-layer conventional composite materials. A large number of investigations on the
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analysis of functionally graded (FG) structures subjected to different loadings are sum-
marized in a review paper by Birman and Byrd in [1], contributions that are most relevant
to the present work are briefly discussed.

Chakraborty et al. [2] derived an exact first-order shear deformable finite beam ele-
ment for analysis of the thermo-elastic behavior of FG beams. Kadoli et al. [3] proposed a
third-order shear deformation finite element formulation for studying the static behavior
of FG beams under ambient temperature. Kang and Li [4, 5] derived the expressions for
the large displacement of nonlinear cantilever FG beams under a transverse tip load or a
tip moment by adopting the neutral surface as reference plane. Huang and Li [6] studied
the bucking of axially FG Bernoulli columns with varying cross sections by an analytical
method. Based on a total Lagrangian formulation, Almeida et al. [7] studied the geomet-
rically nonlinear behavior of FG beams subjected to end forces. Based on the physical
neutral surface, Taeprasartsit [8] derived the displacement functions and buckling loads
of perfect and imperfect Euler-Bernoulli FG columns. Also using the neutral surface as
reference plane, Levyakov [9] derived the elastica solution for FG beam under thermal
loading. Based on the third-order shear deformation beam theory, Zhang [10] derived the
constitutive equations for studying the nonlinear bending of FG beams. Nguyen [11,12],
Nguyen and Gan [13] studied the large deflection of nonuniform FG beams by using the
co-rotational finite element formulations.

Elasto-plastic analysis of FG structures has been drawn considerable attention from
researchers in recent years. Based on Tamura-Tomota-Ozawa (TTO) model [14] and the
finite element code LS-DYNA, Gunes et al. [15] studied the elasto-plastic response of
FG circular plates under low-velocity impact loads. Jahromi et al. [16] employed a bi-
linear tress-strain relationship in modeling the elasto-plastic behavior of an FG rotating
disk. The stress field of the disk is then computed with the aid of the finite element
package ABAQUS. Huang and Han [17], Huang et al. [18] adopted a multi-linear hard-
ening elasto-plastic model in their study of the elasto-plastic buckling of FG cylindrical
shells subjected to axial and torsion loads, respectively. Also using the multi-linear hard-
ening elasto-plastic material model, Zhang et al. [19] studied the buckling behavior of
elasto-plastic FG cylindrical shells under a combination of the axial compressive load
and external pressure. With the aid of Galerkin method, the authors performed a detail
examination on the effects of dimensional parameters and elasto-plastic material prop-
erties on the stability region and elasto-plastic interface of the shells. FG beams, which
are widely used as structural elements for space vehicles, may also experience plastic de-
formation due to the exceed loading during the vehicle operation. Analysis of FG beams
considering the effect of elasto-plastic deformation, therefore is important topic, and it
has been carried out by several authors recently. In this line of work, Nie and Zhong [20]
proposed the solutions for stress distribution of curved elasto-plastic FG beams subjected
to pure bending. Mahbadi [21] derived the equations for evaluating the collapse loads
of FG beams under the axial and/or bending loads. Nguyen et al. [22] studied the post-
buckling behavior of FG beams subjected to an eccentric axial load by using the finite
element method.

This paper presents a finite element procedure for elasto-plastic analysis of FG
beams subjected to various types of mechanical loading. The FGM is assumed to be
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formed from ceramic and metal phases whose volume fraction follows a power-law
distribution. A bilinear stress-strain model with isotropic hardening is adopted for the
metal, and TTO model is employed to evaluate the effective elasto-plastic properties of
the FG beams. A nonlinear beam element based on Euler-Bernoulli beam theory is de-
rived and employed in the analysis. The element adopted the nonlinear von Kámán
strain-displacement relation is derived by using the physical neutral surface as refer-
ence plane. The layer beam approach, in which the plastic equation is solved at quad-
rature Gauss points, is employed in updating the axial stress and evaluating the ele-
ment formulation. The nonlinear equilibrium equations are constructed and solved by
an incremental-iterative procedure based on Newton-Raphson method. The effect of ma-
terial distribution, plastic deformation on the response of the beam is examined and dis-
cussed. The formation of propagation of the plastic zone during the loading process,
which has not been examined in the above cited references, is also studied and high-
lighted.

2. ELASTO-PLASTIC FG BEAMS

Fig. 1 shows an FG ceramic-metal beam with length L, height h and width b in
a Cartesian co-ordinate system (x, z). The volume fraction of the ceramic and metal is
assume to vary in the thickness direction according to

Vc =

(
z
h
+

1
2

)n

, Vm = 1−Vc , (1)

where z is the transverse coordinate, and n (0 ≤ n < ∞) is the power-law index. In Eq. (1)
and hereafter, the subscripts ‘c’ and ‘m’ stand for ‘ceramic’ and ‘metal’, respectively.

Fig. 1. Geometry of an FG beam

The linear elastic behavior of an FGM is described by Hook’s law, and its effec-
tive material properties can be evaluated by micromechanics models used in conven-
tional composites. The elasto-plastic behavior of FG ceramic-metal materials is widely
described by using TTO model. According to TTO model, the uniaxial stress (σ), and
uniaxial strain (ε) of a two-phase composite are related to the corresponding average
uniaxial stresses and strains of the two constituent materials by [23]

σ = σcVc + σmVm , ε = εcVc + εmVm , (2)
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where σc, σm and εc, εm denote the average stresses and strains of the ceramic and metal
phases. An additional parameter q represented the ratio of stress to strain transfer is
introduced as

q =
σc − σm

|εc − εm|
, 0 < q < ∞. (3)

The value of q depends on the properties of constituent materials and the microstruc-
tural interaction in the composite. Various values of q for FGMs formed from different
ceramics and metals are given in Refs. [15, 17].

Fig. 2. A bilinear stress-strain relation for FGM (a), and a stress increment (b)

In TTO model for an FG ceramic-metal material, ceramic phase is assumed to be
linearly elastic during its deformation process. Plastic deformation of the composite arose
from plastic flow of the metal phase when the stress exceeds its yield limit. Here, a
bilinear stress-strain relation with an isotropic hardening is assumed for elasto-plastic
behavior of metal. This model, as illustrated in Fig. 2(a), represents a constant tangent
modulus E0 when the stress in metal phase exceeds its yield limit σ0. The elasto-plastic
behavior of the FG ceramic-metal material also follows a bilinear isotropic hardening
model, which represents a tangent modulus Et in the plastic region as depicted in Fig. 2(a)
by blue lines. The effective properties such as Young’s modulus (E), yield stress (σY)
and tangent modulus (Et) of the FGM are evaluated from the material properties of the
constituent materials and the parameter q by using TTO model as [17, 23]

E =

[
EmVm

q + Ec

q + Em
+ EcVc

]/ [
Vm

q + Ec

q + Em
+ Vc

]
,

σY = σ0

[
Vm +

q + Em

q + Ec

Ec

Em
Vc

]
,

Et =

[
E0Vm

q + Ec

q + E0
+ EcVc

]/ [
Vm

q + Ec

q + E0
+ Vc

]
.

(4)

It is worth to note that at a given value of the power-law index n, the effective Young’s
modulus evaluated by Eq. (4) is slightly smaller than that obtained by Voigt model,
namely

E = VcEc + VmEm = (Ec − Em)

(
z
h
+

1
2

)n

+ Em. (5)
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The Voigt model is widely employed in nonlinear bending analysis of elastic FG beams
[4, 10, 12]. Fig. 3 shows the variation of the Young’s modulus and initial yield stress in
the beam thickness of an FG beam composed of TiB and Ti. The material properties for
TiB and Ti are adopted from Ref. [17] as follows: Ec = 375 GPa (for TiB), Em = 107 GPa,
E0 = 14 GPa, σ0 = 450 MPa (for Ti), and q = 4.5 GPa.
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Fig. 3. Variation of Young’s modulus (a) and yield stress (b) of FG beam composed of TiB and Ti

The effective Young’s modulus defined by Eq. (4) is not symmetrical with respect
to the midplane, and the physical neutral surface of the beam is no longer coincident with
the midplane. The shift of the physical neutral surface from the midplane, h0 (see Fig. 1),
can be determined from the following equation [9, 10]

h0 =

∫ h/2
−h/2 E(z)zdz∫ h/2
−h/2 E(z)dz

(6)

Integrals in the above equation are hardly computed explicitly for the Young’s modulus
E(z) defined by Eq. (4), and Simpson’s rule is used herewith to determine h0.

3. FINITE ELEMENT FORMULATION

Adopting the neutral surface as reference plane, the axial and transverse displace-
ments at any point of the beam, U1(x, z) and U3(x, z), based on Euler-Bernoulli beam
theory are respectively given by

U1(x, z) = u(x)− (z− h0)
dw(x)

dx
, U3(x, z) = w(x), (7)

where u(x) and w(x) are the axial and transverse displacements of a point on the neutral
surface, respectively.

The nonlinear von Kámán strain-displacement relationship accounting for mod-
erately large rotation can be adopted for the axial strain in nonlinear bending analysis
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as

ε =
du
dx

+
1
2

(
dw
dx

)2

− (z− h0)
d2w
dx2 = ε0 + (z− h0)κ, (8)

where ε0 = du/dx + 1
2 (dw/dx)2 is the membrane strain, and κ = −d2w/dx2 is the beam

curvature.
Assuming the beam is being divided into a number of two-node beam elements

with length of l. The vector of nodal displacements for a generic element, (1, 2), contains
six components as

d = {u w} = {u1 u2 w1 θ1 w2 θ2}T , (9)

where u = {u1 u2}T and w = {w1 θ1 w2 θ2}T are the vectors of nodal displacements
corresponding to the nodal stretching and bending displacements, respectively. It should
be noted that the order of the nodal displacements is not necessary as in Eq. (9), but it is
convenient to separate the nodal stretching and bending displacements. The virtual work
for the beam element reads

δV =
∫

V
σδε dV −

∫ l

0
qδwdx, (10)

where V denotes the element volume; q = q(x) is the distributed load acting on the
element, and σ is the elasto-plastic axial stress as depicted in Fig. 2(a). The bilinear elasto-
plastic model in the figure can be simply defined by using the instantaneous elasto-plastic
modulus (Ẽ) as [24, 25]

Ẽ =
∂σ

∂ε
=

{
E if σ ≤ σY or unloading
Et if σ > σY

(11)

The displacements inside the element are interpolated from the nodal displacements as
follows

u = NT
u u , w = NT

ww, (12)

where NT
u = {Nu1 Nu2}, NT

w = {Nw1 Nw2 Nw3 Nw4} are the matrices of interpolation
functions for u and w, respectively. The following linear and cubic Hermite polynomials
are respectively employed to interpolate the axial and transverse displacements

Nu1 =
l
2
(1− ξ) , Nu2 =

l
2
(1 + ξ), (13)

and

Nw1 =
1
4
(2− 3ξ + ξ3) , Nw2 =

1
8

l(ξ2 − 1)(ξ − 1),

Nw3 =
1
4
(1 + 3ξ − ξ3) , Nw4 =

1
8

l(ξ2 − 1)(ξ + 1),

(14)

with ξ = 2x/l − 1 is a non-dimensional coordinate, and 0 ≤ ξ ≤ 1 for 0 ≤ x ≤ l.
The beam element based on the axial strain (8) and the interpolation functions (12)-

(14) encounters the membrane locking. In order to overcome this problem, the effective
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strain, εeff., is introduced to replace the membrane strain in Eq. (8) as [26]

εeff. =
1
l

∫ l

0
ε0dx =

1
l

∫ l

0

[
du
dx

+
1
2

(
dw
dx

)2
]

. (15)

Using Eq. (12)-(14), one can write the effective strain in the following form

εeff. = bT
u u +

1
2l

wT
∫ l

0
bwbT

wdx w, (16)

where

bu =
dNu

dx
=

dNu

dξ

dξ

dx
=

1
l
{−1 1}T , (17)

and

bw =
dNw

dx
=

dNw

dξ

dξ

dx
=

1
4l


6(ξ2 − 1)

l(3ξ2 − 2ξ − 1)

−6(ξ2 − 1)

l(3ξ2 + 2ξ − 1)

 . (18)

In performing the integral, Eq. (16) gives an explicit form for the effective strain as follows

εeff. =
1
l
(u2 − u1) +

1
30l2

[
3l(w1 − w2)(θ1 + θ2)

+ 18(w1 − w2)
2 + l2(2θ2

1 − θ1θ2 + 2θ2
2)
]
.

(19)

With the introduction of the effective strain, one can write the axial strain in the form

ε = bT
u u +

1
2l

wT
∫ l

0
bwbT

wdx w + (z− h0)cT
ww, (20)

where

cw = −d 2Nw

dx2 = − 1
l2 {6ξ l(3ξ − 1) − 6ξ l(3ξ + 1)}T . (21)

Eq. (20) gives the virtual axial strain in the form

δε = bT
u δu +

[
eT

w + (z− h0)cT
w

]
δw, (22)

where

ew =
dεeff.

dw
=



1
10l

[12(w1 − w2) + l(θ1 + θ2]

1
30

[3(w1 − w2) + l(4θ1 − θ2)]

1
10l

[12(w2 − w1) + l(θ2 + θ1)]

1
30

[3(w2 − w1) + l(4θ2 − θ1)]


. (23)
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The virtual work for the beam element can be now written in the form

δV =
∫

V

{
bT

u δu +
[
eT

w + (z− h0)cT
w

]
δw
}

σdV −
∫ l

0
q(x)δwdx

= fT
inδd− fT

exδd,

(24)

where fin and fex are respectively the vectors of internal and external nodal forces. By
splitting the vector fin into stretching and bending parts, fin = {fu fw}, one can obtain
from Eq. (24)

fu = {N1 N2}T =
∫

V
buσdV,

fw = {Q1 M1 Q2 M2}T =
∫

V
[ew + (z− h0)cw] σdV.

(25)

For the distributed load q(x) considered herein, only coefficients corresponding to the
nodal bending displacements w of the external load vector fex are nonzero. Using Eq. (14),
a simple expression for the consistent load vector fex defined by Eq. (10) can be easily ob-
tained. Finally, the element tangent stiffness matrix, kt, is obtained by differentiating the
element nodal forces with respect to the nodal displacements. To this end, we write kt in
the form

kt =

[
kuu kuw

kwu kww

]
=

 ∂fu

∂u
∂fu

∂w
∂fw

∂u
∂fw

∂w

 . (26)

Noting that
∂σ

∂u
=

∂σ

∂ε

∂ε

∂u
, and

∂σ

∂w
=

∂σ

∂ε

∂ε

∂w
. (27)

From Eqs. (11), (20) and (25) one can obtained the sub-matrices in Eq. (26) in the forms

kuu =
∫

V
bubT

u Ẽ dV , kuw = kT
wu =

∫
V

bu

[
eT

w + (z− h0)cT
w

]
Ẽ dV,

kww =
∫

V

{[
eweT

w + 2(z− h0)ewcT
w + (z− h0)

2cwcT
w

]
Ẽ + Bσ

}
dV,

(28)

in which B is a symmetric matrix with the following components

B =
∂eT

∂d
=

1
30l


36 3l −36 3l
3l 4l2 −3l −l2

−36 −3l 36 −3l
3l −l2 −3l 4l2

 . (29)

It is easy to verify that for a homogeneous beam, the element nodal force vector and
tangent stiffness matrix given by Eqs. (25) and (28) deduce to the formulations previously
derived by the first author and his co-workers in [27].

The nonlinear equilibrium equations for the beam constructed from the derived
element internal force vector and tangent stiffness matrix can be written in the form [26]

g(D, λλλ) = Fin(D)− Fex = Fin(D)− λfef = 0. (30)
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In Eq. (30), g is the out of balance force vector; D, Fin and Fex are respectively the structural
vectors of nodal displacements, internal and external nodal forces; fef is the fixed external
loading vector, and λ is a load level parameter.

Eq. (30) can be solved by an incremental-iterative procedure based on Newton-
Raphson method [26]. Gauss quadrature is employed to compute the force vector and
stiffness matrix defined by Eqs. (25) and (28). A simple algorithm for updating stress of
one-dimensional elasto-plastic problems described in [28, 29] is adopted herein.

4. NUMERICAL EXAMPLES

Numerical examples are given in this Section to show the accuracy of the formu-
lated formulation and to illustrate the effect of material distribution and plastic deforma-
tion on the behavior of FG beam under various types of loading. Otherwise stated, nine
Gauss points along the element length and fifteen Gauss points through the beam thick-
ness are employed in all the computations reported below. The large numbers of Gauss
points are used in the beam thickness in order to predict the plastic deformation as soon
as it appears near the beam surfaces.

4.1. Formulation verification
The present formulation reduces to the one previously derived by Nguyen et al.

in [22] for the case of FG beams under an eccentric axial force. In addition, to the authors’
best knowledge, there is no investigation the elasto-plastic response of FG beams under
distributed loads available in the literature, the verification is focused on the nonlinear
bending of elastic FG beams under a distributed load. To this end, the nonlinear bend-
ing behavior of a clamped elastic Si3N4-SUS304 beam under uniform distributed load q0,
previously studied by Zhang [10] by using Ritz method, is investigated. In order to an-
alyze the elastic beam by using the present computer code, the yield stress σ0 is set to a
large value in the input data, and thus yielding will not occur. In Fig. 4 the normalized
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of clamped elastic Si3N4/SUS304 beam under uniform distributed load
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applied load versus the maximum dimensionless transverse displacement of the beam
is depicted for various values of the power-law index n, where the result by Zhang is
illustrated by small blue circles. A good agreement between the numerical of the present
paper with that of Zhang is noted. It is worth to mention that the numerical result in Fig. 4
has been converged by using sixteen elements, and this number of elements is used in all
the computations reported below.

4.2. Clamped beam under distributed load
An FG beam clamped at both ends (referred to as CC beam) under a uniformly

distributed load q0 is considered. The beam with square section, b = h = 1 m, and an
aspect ratio L/h = 20 is formed from TiB and Ti with the elasto-plastic properties stated
in Section 2. In Fig. 5, the relation between the normalized applied load and the normal-
ized maximum deflection of the CC beam obtained by both the elastic and elasto-plastic
analyses is depicted for two indexes, n = 0.5 and n = 5. The effect of plastic deformation
on the nonlinear bending is clearly seen from the figure. The transverse displacement
obtained by the elasto-plastic analysis is considerably larger than that obtained by the
elastic analysis, and this is more pronounced at the higher load amplitude. The effect of
the material distribution on the nonlinear bending of the elasto-plastic beam is similar
to that of the elastic beam, in which the maximum displacement is larger for the beam
associated with a higher index n.
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Fig. 5. Relation between normalized load and dimensionless maximum deflection of CC beam

In order to study how the yielding occurs and the plastic deformation propagates,
the axial stresses at lower and upper Gauss points of the clamped and middle section
of the CC beam, namely points A1, A2, B1 and B2 in Fig. 5, are monitored during the
loading process. The co-ordinates of the sampling Gauss points are shown in the upper
left corner of Fig. 5. Tab. 1 lists the stress at the sampling points at various values of
the load amplitude. The results given in the table were obtained with a load increment
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Table 1. Axial stress (×108 N/m2) at Gauss points A1, A2, B1, B2 in Fig. 5 of CC beam

q0 (kN/m)
n Point 1000 1500 2000 2500 3000 3500

0.2 A1 1.2127 1.8211 2.4305 3.0457 3.6752 4.3372
A2 -2.4331 -3.6427 -4.8428 -6.0299 -7.2494 -8.5388
B1 -0.6116 -0.9146 -1.2156 -1.5146 -1.8117 -2.1077
B2 1.2492 1.8792 2.5124 3.1491 3.7912 4.4409

0.5 A1 1.2335 1.8524 2.4748 3.1183 3.7805 4.4626
A2 -2.7909 -4.1754 -5.5134 -6.8814 -8.3103 -9.8110
B1 -0.6212 -0.9283 -1.2330 -1.5354 -1.8357 -2.1343
B2 1.4373 2.1640 2.8956 3.6355 4.3863 5.1267

2 A1 1.5332 2.3041 3.1062 3.9517 4.5428 4.6845
A2 -3.4447 -5.0647 -6.5526 -8.1675 -9.8875 -12.0164
B1 -0.7701 -1.1496 -1.5256 -1.8988 -2.2708 -2.6612
B2 1.7815 2.6852 3.6025 4.5420 5.3689 6.2808

5 A1 1.6428 2.4782 3.3678 4.2907 4.6085 4.7955
A2 -3.9650 -5.5256 -6.9885 -8.5542 -10.3605 -12.7688
B1 -0.8234 -1.2283 -1.6297 -2.0313 -2.4392 -2.8743
B2 2.0523 3.0956 4.1626 5.0680 5.8752 6.8106

of 500 kN/m. In the Table, the numbers in bold face are the values of the stress at the
Gauss points where yielding has occurred. As seen from the table, yielding at the top
and bottom layers (containing the Gauss points) of the FG beam does not occur at the
same time during the loading as it happens in an elasto-plastic homogeneous beam. At
a given value of the index n, yielding, according to TTO model, commences in the layer
close to the ceramic surface much earlier that it does in the layer near the metal surface.
The formation of the first yielding in the layer close to the ceramic surface found herein
is similar to that obtained by Nie and Zhong in Ref. [20], where a curved elasto-plastic
FG beam under pure bending was studied. Tab. 1 also shows that the power-law index n
influences the first yielding in the FG beam, and the first yielding of the beam associated
with a higher index n commences at a lower load amplitude.

In Fig. 6, the plastic zones in some selected elements, namely elements 1, 2, 8,
9, 15 and 16, of the CC beam are depicted for an index n = 2 and various values of
the load amplitude q0. The figure shows a steady expansion of plastic zones from the
outer surfaces into the interior of the beam as the load increases. The plastic propagation
from the bottom surface to the interior is, however very different from that from the top
surface. Although yielding commences in the layer near the top (ceramic) surface first,
the plastic propagation from this surface to interior of the beam, as seen from Fig. 6(c), is
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Fig. 6. Plastic zone in selected elements of CC beam: (a) q0 = 4000 kN,
(b) q0 = 6000 kN; (c) q0 = 8000 kN (n = 2)

slower than that from the bottom (metal) surface. The propagation of the plastic zone can
also be seen from Fig. 7, where the distribution of the axial stress in the beam thickness
of clamped section is shown for various value of the load level and for n = 5. The
height of the beam thickness corresponding to the elastic stress gradually decreases as
the load amplitude increases. For a give load amplitude, the height corresponding to the
elastic stress of the clamped section is smaller than that of the middle section, and this
observation is in accordance with the plastic zones depicted in Fig. 6. It should be noted
that in order to ensure the smoothness of the curves, thirty one Gauss points in the beam
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Fig. 7. Thickness distribution of axial stress of clamped section of CC beam (n = 5)
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thickness have been used in computing the stress in Fig. 7, and only a part of the obtained
stresses is displayed in the figure.

4.3. Immovable simply supported beam under distributed load
An immovable simply supported beam (referred to as SS beam) composed of TiB

and Ti under a uniform distributed load q0 is analyzed this Sub-section. In Fig. 8 the
relation between the normalized load and the dimensionless deflection of the SS beam is
depicted for various values of the index n. As in case of the CC beam, for a given value
of the applied load the maximum deflection of the SS beam increases by increasing the
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Fig. 9. Plastic zone in selected elements of SS beam under uniform loading:
(a) q0 = 4000 kN, (b) q0 = 6000 kN; (c) q0 = 8000 kN (n = 2)
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index n. The propagation of plastic zone in the SS beam during the loading process is
shown in Fig. 9 for various values of the load amplitude. The size of the plastic zone
gradually increases by increasing the load amplitude. Different from the CC beam, the
plastic zone in the middle region of the SS beam is much larger than that of the CC beam.
A detail examination of the stresses at Gauss points (not shown herein) also confirms that
the first yielding in the SS beam occurs in the layer close to the ceramic earlier that it does
in the layer next to the metal surface.

4.4. Cantilever beam under an eccentric axial load
A cantilever FG beam with L = 5 m, b = 0.2 m, h = 0.1 m, subjected to an ec-

centric compressive axial load P at its free end is considered. The material data for the
constituents are adopted from the work of Jahromi et al. [16] as follows: Ec = 80 GPa,
Em = 56 GPa, σ0 = 106 MPa, E0 = 12 GPa and q = 17.2 GPa.
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Fig. 10. Equilibrium paths for CF beam under eccentric axial load (rc = 0.01)

In Fig. 10, the equilibrium paths for the CF beam obtained by elastic and elasto-
plastic analyses are depicted for an eccentric ratio rc = 0.01 and two values of the power-
law index, n = 0.2 and n = 5. The effect of the eccentric ratio rc on the load-displacement
curve of the beam is displayed in Fig. 11 for n = 2. The eccentric ratio is defined as

rc =
ec
r

, where e is distance from the applied load to the neutral surface, c = h/2− h0,

and r =
√

I/A is the radius of gyration of the beam [30]. The applied load is normalized
by the Euler load of a pure metal cantilever beam, namely P0 = π2Em I/4L2. As seen from
Fig. 10, the plastic deformation changes the post-buckling behavior of the beam, and the
post-buckling of the beam becomes unstable when the effect of the plastic deformation
is taken into account. The post-buckling strength measured in term of the ratio between
the applied load and the buckling load is affected by the power-law index n, and the
post-buckling strength of the beam associated with a higher index n is weaker. The limit
load of the beam, as seen from Fig. 11, gradually reduces by raising the eccentric ratio.



Elasto-plastic analysis of functionally graded metal-ceramic beams under mechanical loading 27

0 0.05 0.1 0.15 0.2

0.2

0.4

0.6

0.8

1  

1.2

Tip deflection, w
L
/L

A
pp

lie
d 

lo
ad

, P
/P

0

r
c
=0.001

r
c
=0.01

r
c
=0.05

r
c
=0.1

The first yielding point 

Fig. 11. Effect of eccentric ratio on load-displacement curve of CF beam (n = 2)

In addition, the deflection of the at which the first yielding occurs is smaller for a large
eccentric ratio. The effect of plastic deformation on the behavior of the FG beam in post-
buckling region mentioned above is in agreement with the result previously shown in
Ref. [22].

5. CONCLUSIONS

A finite element procedure for elasto-plastic analysis of FG ceramic-metal beams
was presented. A bilinear stress-strain model is assumed for the metal phase and the ef-
fective elasto-plastic properties of the FGM were evaluated by using TTO model. Based
on Euler-Bernoulli beam theory, a nonlinear beam element, taking the effect of plastic de-
formation into account, was formulated and employed in the analysis. An incremental-
iterative procedure based on Newton-Raphson method was employed in solving the
nonlinear equilibrium equations and tracing the equilibrium paths. Numerical examples
have been given to show the accuracy and efficiency of the derived formulation. The
numerical results have shown that yielding in the FG beam commences at the layer close
to the ceramic surface much earlier that it does at the layer near the metal surface. The
formation and propagation of the plastic zones in the FG beam, which are quite different
from homogeneous beams, have also been examined and highlighted.
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