
Vietnam Journal of Mechanics, VAST, Vol. 38, No. 4 (2016), pp. 307 – 317
DOI:10.15625/0866-7136/7476

AN EVOLUTIONARY-BASED OPTIMIZATION
ALGORITHM FOR TRUSS SIZING DESIGN

Pham Hoang Anh
National University of Civil Engineering, Hanoi, Vietnam

E-mail: anhpham.nuce@gmail.com
Received November 28, 2015

Abstract. In this paper, the optimal sizing of truss structures is solved using a novel
evolutionary-based optimization algorithm. The efficiency of the proposed method lies
in the combination of global search and local search, in which the global move is applied
for a set of random solutions whereas the local move is performed on the other solutions
in the search population. Three truss sizing benchmark problems with discrete variables
are used to examine the performance of the proposed algorithm. Objective functions of the
optimization problems are minimum weights of the whole truss structures and constraints
are stress in members and displacement at nodes. Here, the constraints and objective func-
tion are treated separately so that both function and constraint evaluations can be saved.
The results show that the new algorithm can find optimal solution effectively and it is
competitive with some recent metaheuristic algorithms in terms of number of structural
analyses required.

Keywords: Structural optimization, evolutionary-based optimization, metaheuristics, truss
structure, sizing optimization.

1. INTRODUCTION

Truss optimization is one of the most popular design problems and has been an ex-
tensive research area both in modeling and development of optimization methods. Often
the weight of truss structure is to be minimized subject to stress, displacement, and/or
natural frequency constraints. This optimization task is in general difficult to solve be-
cause of non-linear constraints and non-convex feasible region. This means that the con-
vergence of traditional gradient-based optimization methods cannot be ensured [1].

Metaheuristics such as genetic algorithms, particle swarm algorithms and evolu-
tion algorithms have been increasingly proposed as alternative techniques for optimiza-
tion of truss structures [2]. Recently developed metaheuristics have shown good perfor-
mance, for example, are: harmony search algorithm (SAHS) [3], teaching-learning-based
optimization (TLBO) algorithm [4, 5], chaotic swarming of particle (CSP) algorithm [6],
colliding bodies optimization (CBO) [7, 8], flower pollination algorithm (FPA) [9], water

c© 2016 Vietnam Academy of Science and Technology

http://dx.doi.org/10.15625/0866-7136/7476
mailto: anhpham.nuce@gmail.com

308 Pham Hoang Anh

cycle algorithm (WCA) [10] and mine blast algorithm (MBA) [10, 11], adaptive dimen-
sional search (ADS) [12], and some new variants of the well-known differential evolution
including adaptive differential evolution algorithm (ADEA) [1], improved constrained
differential evolution using discrete variables (D-ICDE) [13], adaptive elitist differential
evolution (aeDE) [14] and reliability-based improved constrained differential evolution
(SORA-ICDE) [15].

The contribution of this paper is a new evolutionary-based algorithm which is ap-
plied to optimal sizing of truss structures. The formulation of the optimization problem
and the constraint handling rules are presented in Section 2. In Section 3, the new al-
gorithm is described in details. Validation and efficiency of the proposed algorithm in
finding optimal structural optimization solutions are given in Section 5, in which three
well-known truss structures have been examined and the results have been compared
with some state-of-the-art metaheuristics. Conclusions are presented in Section 6.

2. TRUSS SIZING OPTIMIZATION

2.1. Problem formulation
In sizing design optimization of truss structures the goal is to find a minimum

weight by selecting the cross-sectional areas of structural members such that the final
design satisfies strength and serviceability requirements determined by standard design
codes. The cross-section areas can be continuous values between the lower bound li and
upper bound ui or discrete values form a set S of P given values (often are the cross-
sections according to production standards).

For a given truss structure, the objective is to find vector of cross-section areas
for Nm members of the structure A = [A1, A2, . . . , ANm] which minimizes the following
weight objective function

W =
Nm

∑
i=1

ρiLi Ai , (1)

subjected to Nc design constraints gj ≤ g0,j, j = 1, . . . , Nc, where ρi and Li are the ma-
terial density and length of the i-th member, respectively; gj are Nc constraint functions
(displacement or stress in this paper) and g0,j are allowable values of gj.

In this paper, the constraints are modified from the conventional form of con-
strained optimization as Eq. (2) and constraint violation is determined by Eq. (3)

cj =
gj

g0,j
− 1 ≤ 0, (2)

C =
Nc

∑
j

max{0, cj}. (3)

2.2. Constraint handling
To solve the above constrained optimization problem, the constraints and the ob-

jective function are treated separately. The following rules are applied:
1. A feasible solution is better than any infeasible one.

An evolutionary-based optimization algorithm for truss sizing design 309

2. Between two feasible solutions or two solutions with equal constraint violation,
the one having smaller objective function value is better.

3. Between two infeasible solutions, the one having smaller constraint violation
is better.

These rules were originally suggested by Deb [16] to handle the constrained prob-
lem for genetic algorithm, which has been shown successful for other metaheuristics. For
handling bound constraints, cutting-off technique [17] is adopted, i.e. the generated vio-
lating value is substituted by the bound value, since in many cases the optimum solution
is located at one of the bound of a given design variable.

3. PROPOSED EVOLUTIONARY-BASED OPTIMIZATION ALGORITHM

Like many other algorithms, the proposed method also uses a population P of NP
vectors (individuals) of Nd design variables xk = [xk,1, xk,2, . . . , xk,Nd] (k = 1, 2, . . . , NP).
The population is then restructured by survival individuals evolutionally. The initial
population is generated as

xk,i = li + rand[0, 1].(ui − li), i = 1, . . . , Nd, (4)

where rand[0, 1] is a uniformly distributed random real value in the range [0,1].
At the current generation, each individual xcurrent

k of the population is updated us-
ing either a global move or a local move. For xcurrent

k among p × NP random solutions
(1/NP < p < 1), the updating Eq. (5) (global step) is applied,

xnew
k = xcurrent

k +

{
r(xbest − xcurrent

k), if xcurrent
k 6= xbest

(r1 − r2)xbest, if xcurrent
k ≡ xbest

(5)

otherwise the updating Eq. (6) (local step) is used.

xnew
k = xcurrent

k +

{
r(xl − xm), if xl better than xm
r(xm − xl), otherwise (6)

In Eq. (5) and Eq. (6), xbest is the best found solution in the current population,
xl and xm are two different individuals randomly chosen in the population (1 ≤ l 6= m ≤
NP), r, r1, and r2 are vectors of Nd uniformly distributed random numbers within the
range [0, 1]. The global move allows a solution to take a random step toward the current
best solution, whereas the local move allows a solution move around it current location.

If the updated solution xnew
k is better than xcurrent

k , then xnew
k becomes the k-th mem-

ber in P of the next generation; otherwise, the old individual xcurrent
k is retained. The

search proceeds until either a convergence criterion is met or the maximum number of
iteration/function evaluations is reached. The pseudo code of the proposed algorithm is
given in Fig. 1.

In the comparison between the two solutions, based on the constraint handling
rules in Section 2.2, the following are taken place:

1. If xcurrent
k is infeasible: xnew

k is better than xcurrent
k when xnew

k has smaller constraint
violation. Therefore, evaluation of objective function is not necessary.

310 Pham Hoang Anh

2) If

current

kx

is feasible:

new

kx is better than current

kx

when

new

kx is feasible and has

smaller objective function value. Thus, in case
new

kx has equal or larger objective

function value, the evaluation of constraint violation of
new

kx is not necessary.

Fig. 1 Pseudo code of the proposed algorithm

To adapt the algorithm for problems with discrete variables, the rounding technique

can be applied, i.e. each value of a design variable vector, right after created either at

initial state or later in the updating, is rounded to the nearest value in the discrete value

list.

4. TEST PROBLEMS

Three well-known test problems of truss sizing optimization are employed in this

paper. The design problems were assigned to minimize the weight of truss subjected to

stress and displacement constraints. The design variables are cross-section areas of the

truss members which are chosen from a given list of discrete values.

4.1. Ten-bar planar truss

The truss layout is illustrated in Fig. 2. The structure is subjected to load P=-100

kips at node 2 and node 4. The design variables are the bar element cross-section areas.

The cross-section areas (in
2
) are chosen from the list: 1.62, 1.80, 1.99, 2.13, 2.38, 2.62,

2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49,

4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8,

19.9, 22.0, 22.9, 26.5, 30.0, 33.5. The modulus of elasticity and material density are 10
4

ksi and 0.1 lb/in
3
. The allowable stress is 25 ksi for both tension and compression stress

in each member. The allowable displacement of nodes in x and y directions is 2 in.

Initialize a population of NP random solutions

Evaluate objective function and constraint violation of each solution

Set the number of top-ranked solution (or set p)

while termination condition not satisfied

Select pNP random solutions in the population

for k = 1 to NP do

 if
current

kx is among pNP selected solutions

Generate new solution
new

kx

by global move via Eq. (5)

else

 Generate new solution
new

kx by local move via Eq. (6)

end if

 If the new solution is better, update it in the next generation

end for

end while

Fig. 1. Pseudo code of the proposed algorithm

2. If xcurrent
k is feasible: xnew

k is better than xcurrent
k when xnew

k is feasible and has
smaller objective function value. Thus, in case xnew

k has equal or larger objective function
value, the evaluation of constraint violation of xnew

k is not necessary.
To adapt the algorithm for problems with discrete variables, the rounding tech-

nique can be applied, i.e. each value of a design variable vector, right after created either
at initial state or later in the updating, is rounded to the nearest value in the discrete
value list.

4. TEST PROBLEMS

Three well-known test problems of truss sizing optimization are employed in this
paper. The design problems were assigned to minimize the weight of truss subjected to
stress and displacement constraints. The design variables are cross-section areas of the
truss members which are chosen from a given list of discrete values.

4.1. Ten-bar planar truss
The truss layout is illustrated in Fig. 2. The structure is subjected to load P = −100

kips at node 2 and node 4. The design variables are the bar element cross-section areas.
The cross-section areas (in2) are chosen from the list: 1.62, 1.80, 1.99, 2.13, 2.38, 2.62,
2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80,
4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5,
30.0, 33.5. The modulus of elasticity and material density are 104 ksi and 0.1 lb/in3. The
allowable stress is 25 ksi for both tension and compression stress in each member. The
allowable displacement of nodes in x and y directions is 2 in.

4.2. Twenty-five-bar space truss

The truss layout is illustrated in Fig. 3. The material density equals to 0.1 lb/in3

and modulus of elasticity equals to 104 ksi. The cross-section areas divided into eight

An evolutionary-based optimization algorithm for truss sizing design 311

1

2

3

4

5

6

1 2

3 4

5 6

7 8 9 10

360 in 360 in

360 in

Fig. 2. Ten-bar truss layout

-100
-50

0
50

100

-100
-50

0
50

100
0

20

40

60

80

100

120

140

160

180

200

9

24

20

16

5

6

17

2

4

8

11

7

13

23

4

5

3

21

1

18

2

6

25

12

9

10

14

8

10

1

3

19

15

22

7

Fig. 3. Twenty-five-bar truss layout

member groups. The displacement constraints require that the maximum displacements
at nodes 1 and 2 be limited to 0.35 in, in both the x and y directions. The constraints for
stress are 40 ksi for both tension and compression stress in each member. The loading
data is listed in Tab. 1. The cross-section areas (in2) are chosen from the list: 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5,
2.6, 2.8, 3.0, 3.2, 3.4.

Table 1. Loading conditions for 25-bar truss

Condition Node Fx (kips) Fy (kips) Fz (kips)
1 1 1 -10 -10

2 0 -10 -10
3 0.5
6 0.6

4.3. Seventy-two-bar space truss
The truss layout is depicted in Fig. 4. The cross-section areas are divided into six-

teen member groups and are chosen from the list of 25 options: 0.1, 0.2, . . . , 2.5 in2. The
constraints involve a maximum allowable displacement of 0.25 in at the nodes 1 to 16
along the x and y directions, and a maximum allowable stress in each member of 25 ksi.
The density of the material is 0.1 lb/in3and the modulus of elasticity is equal to 104ksi.
Two load cases are given in Tab. 2.

The proposed algorithm was used to solve each problem with 20 optimization
runs. Finite-element method was applied to calculate stress in truss members and dis-
placements at nodes. The algorithm and analysis program are implement in MATLAB
7 R2012a environment. The parameter setting in the considered optimization problems
is: the population size NP = 30, the rate of global search p = 0.2, i.e. using 6 solutions

312 Pham Hoang Anh

2

6

10

14

18

9

5

1

13

17

(a)

0
20

40
60

80
100

120

0

50

100

0

10

20

30

40

50

60

3

7

3

10

8

15

14

9

7

8

4

4

18

9

2

2

6

17

12

6

16

13

11

5

1

5

1

(b)

Fig. 4. 72-bar truss layout: (a) numbering scheme; (b) element numbering for first story

Table 2. Loading conditions for 72-bar truss

Load case Node Fx (kips) Fy (kips) Fz (kips)
1 17 5 5 -5
2 17 0 0 -5

18 0 0 -5
19 0 0 -5
20 0 0 -5

for global search. The termination condition is when the number of iterations exceeds a
predefined value, which is 100 for the ten-bar truss and the 25-bar truss problems, and
200 for the 72-bar truss problem.

5. RESULTS

5.1. Ten-bar truss
Optimization results obtained by the proposed algorithm are compared with some

most recent metaheuristics, including MBA [11], TLBO [5], ADS [12] and aeDE [14]. The
statistical results of optimal weight are given in Tab. 3, including the minimum, the me-
dian, the mean, the maximum values and the standard deviation. The proposed algo-
rithm results in a minimum design weight of 5490.74 lb for the truss, which is the same
as results by aeDE, ADS and TLBO and lighter than that of MBA. On average of 20 runs,
the mean weight of the proposed algorithm is 5504.0206 lb, which is better than those
of ADS and MBA and as good as that of TLBO and aeDE. More importantly, the pro-
posed algorithm exhibits improved computational efficiency when compared to aeDE,
TLBO and MBA. The average number of structural analyses required by the proposed

An evolutionary-based optimization algorithm for truss sizing design 313

algorithm to converge is 1669. In the best run, the proposed algorithm can find the min-
imum designed weight (5490.7379 lb) within 1377 truss analyses. In 100 iterations, there
are on average approximately 1893 actual calls for constraint evaluation, i.e. about 1107
structural analyses are skipped.

Table 3. Comparison on optimal weights (lb) of 10-bar truss

Size of members (in2) This paper aeDE [14] ADS [12] TLBO [5] MBA [11]
1 33.5 33.5 33.5 33.5 30.00
2 1.62 1.62 1.62 1.62 1.62
3 22.9 22.9 22.9 22.9 22.90
4 14.2 14.2 14.2 14.2 16.90
5 1.62 1.62 1.62 1.62 1.62
6 1.62 1.62 1.62 1.62 1.62
7 7.97 7.97 7.97 7.97 7.97
8 22.9 22.9 22.9 22.9 22.90
9 22 22 22 22 22.90
10 1.62 1.62 1.62 1.62 1.62

Min. weight (lb) 5490.7379 5490.7379 5490.74 5490.74 5507.758
Median weight (lb) 5494.4676 - - - -
Mean weight (lb) 5504.0206 5502.623 5539.97 5503.21 5527.296
Max. weight (lb) 5538.3529 5549.204 5591.43 - 5536.965

Standard deviation 16.0528 20.780 35.86 20.33 11.38
Number of analyses 1377 2380 1000 5183 3600

0 20 40 60 80 100
5000

5500

6000

6500

7000

7500

8000

8500

Number of Iterations

W
e

ig
h
t

(l
b
)

mean

best

worst

Fig. 5. Typical convergence history of ten-bar truss

Fig. 5 shows the typical convergence history of the proposed algorithm for this
truss design problem, including the mean of all runs, the best run and the worst run.

314 Pham Hoang Anh

5.2. Twenty-five-bar truss
Tab. 4 gives the statistical results of optimum weight of the 25-bar truss by the

proposed algorithm over 20 runs. The best truss design developed by the proposed al-
gorithm weighs 484.3286 lb, which is lighter than the design by aeDE [14], MBA [11] and
TLBO [5]. The proposed algorithm also uses a significantly smaller number of structural
analyses than MBA and TLBO. The proposed algorithm requires an average of approxi-
mately 1469 structural analyses to converge to a design, while values reported by TLBO
and MBA are 4910 and 2150, respectively. In the best run, the proposed algorithm can
find the minimum designed weight within 998 truss analyses. In 100 iterations, the algo-
rithm skips about 1159 constraint evaluations.

Table 4. Comparison on optimal weights (lb) of 25-bar truss

Size of members (in2) This paper aeDE [14] TLBO [5] MBA [11]
1 0.1 0.1 0.1 0.1

2-5 0.4 0.3 0.3 0.3
6-9 3.4 3.4 3.4 3.4

10-11 0.1 0.1 0.1 0.1
12-13 2.2 2.1 2.1 2.1
14-17 1 1 1 1
18-21 0.4 0.5 0.5 0.5
2-25 3.4 3.4 3.4 3.4

Min. weight (lb) 484.3286 484.854 484.854 484.854
Median weight (lb) 484.3286 - - -
Mean weight (lb) 484.4075 485.014 484.91 484.885
Max. weight (lb) 485.3797 486.100 - 485.048

Standard deviation 0.2572 0.273 0.17 7.2E-02
Number of analyses 998 1440 4910 2150

0 20 40 60 80 100
450

500

550

600

650

700

750

Number of Iterations

W
e

ig
h
t

(l
b
)

mean

best

worst

Fig. 6. Typical convergence history of twenty-five-bar truss

An evolutionary-based optimization algorithm for truss sizing design 315

Fig. 6 shows the typical convergence history of the proposed algorithm for this
truss design problem, including the mean of all runs, the best run and the worst run.

5.3. Seventy-two-bar truss
The statistical optimization results of the proposed algorithm for 72-bar truss are

given in Tab. 5, together with results reported by CBO [8], improved MBA [10], WCA [10]
and improved magnetic charged system search (IMCSS) [18]. The best design obtained by
the proposed algorithm is 385.5427 lb, which is identical to the results given by the other
methods. However, the proposed algorithm has mean optimum weight of 386.5024 lb,
which is a little bit higher than that of WCA and IMBA. The proposed algorithm is also
more computationally efficient than the other algorithms. On average, approximately
2613 structural analyses are required by the proposed algorithm to converge and the best
run requires 2158 structural analyses. The average number of structural analyses skipped
in 200 iterations is 2767.

Table 5. Comparison on optimal weights (lb) of 72-bar truss

Size of members (in2) This paper CBO [8] IMCSS [18] IMBA [10] WCA [10]
1-4 1.9 1.9 2 1.9 1.9
5-12 0.5 0.5 0.5 0.5 0.5

13-16 0.1 0.1 0.1 0.1 0.1
17-18 0.1 0.1 0.1 0.1 0.1
19-22 1.4 1.4 1.3 1.4 1.4
23-30 0.5 0.5 0.5 0.5 0.5
31-34 0.1 0.1 0.1 0.1 0.1
35-36 0.1 0.1 0.1 0.1 0.1
37-40 0.5 0.5 0.5 0.5 0.5
41-48 0.5 0.5 0.5 0.5 0.5
49-52 0.1 0.1 0.1 0.1 0.1
53-54 0.1 0.1 0.1 0.1 0.1
55-58 0.2 0.2 0.2 0.2 0.2
59- 66 0.6 0.6 0.6 0.6 0.6
67-70 0.4 0.4 0.4 0.4 0.4
71-72 0.6 0.6 0.6 0.6 0.6

Min. weight (lb) 385.5427 385.54 385.54 385.542 385.542
Median weight (lb) 386.5368 - - - -
Mean weight (lb) 386.5024 401 - 385.765 385.842
Max. weight (lb) 387.9427 460.98 - 387.942 386.800

Standard deviation 0.9965 16.99 - 0.41 0.55
Number of analyses 2158 4500 3625 5750 3200

316 Pham Hoang Anh

Fig. 7 shows the typical convergence history of the proposed algorithm for this
truss design problem, including the mean of all runs, the best run and the worst run.

0 50 100 150 200
300

400

500

600

700

800

900

Number of Iterations

W
e

ig
h
t

(l
b
)

mean

best

worst

Fig. 7. Typical convergence history of seventy-two-bar truss

6. CONCLUSION

A new evolutionary-based optimization is introduced and applied for optimal siz-
ing of truss structures. Computational results obtained from some benchmark truss op-
timization problems illustrate the efficiency of the proposed algorithm. The convergence
rate and computational cost (in terms of structural analyses) are also very competitive
with some state-of-the-art metaheuristics for truss sizing found in literature. The po-
tential of the proposed algorithm in solving more complex and large-scale optimization
problems will be explored in further study.

REFERENCES

[1] S. Bureerat and N. Pholdee. Optimal truss sizing using an adaptive differential evolution al-
gorithm. Journal of Computing in Civil Engineering, 30, (2), (2015). doi:10.1061/(ASCE)CP.1943-
5487.0000487.

[2] M. Stolpe. Truss optimization with discrete design variables: A critical review. Structural and
Multidisciplinary Optimization, 53, (2), (2016), pp. 349–374. doi:10.1007/s00158-015-1333-x.

[3] S. O. Degertekin. Improved harmony search algorithms for sizing optimization of truss struc-
tures. Computers & Structures, 92, (2012), pp. 229–241. doi:10.1016/j.compstruc.2011.10.022.

[4] S. O. Degertekin and M. S. Hayalioglu. Sizing truss structures using teaching-
learning-based optimization. Computers & Structures, 119, (2013), pp. 177–188.
doi:10.1016/j.compstruc.2012.12.011.

[5] C. V. Camp and M. Farshchin. Design of space trusses using modified teaching-
learning based optimization. Engineering Structures, 62, (2014), pp. 87–97.
doi:10.1016/j.engstruct.2014.01.020.

http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000487
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000487
http://dx.doi.org/10.1007/s00158-015-1333-x
http://dx.doi.org/10.1016/j.compstruc.2011.10.022
http://dx.doi.org/10.1016/j.compstruc.2012.12.011
http://dx.doi.org/10.1016/j.engstruct.2014.01.020

An evolutionary-based optimization algorithm for truss sizing design 317

[6] A. Kaveh, R. Sheikholeslami, S. Talatahari, and M. Keshvari-Ilkhichi. Chaotic swarming of
particles: A new method for size optimization of truss structures. Advances in Engineering
Software, 67, (2014), pp. 136–147. doi:10.1016/j.advengsoft.2013.09.006.

[7] A. Kaveh and V. R. Mahdavi. Colliding bodies optimization method for optimum design
of truss structures with continuous variables. Advances in Engineering Software, 70, (2014),
pp. 1–12. doi:10.1016/j.advengsoft.2014.01.002.

[8] A. Kaveh and V. R. Mahdavi. Colliding bodies optimization method for optimum
discrete design of truss structures. Computers & Structures, 139, (2014), pp. 43–53.
doi:10.1016/j.compstruc.2014.04.006.

[9] G. Bekdaş, S. M. Nigdeli, and X.-S. Yang. Sizing optimization of truss structures
using flower pollination algorithm. Applied Soft Computing, 37, (2015), pp. 322–331.
doi:10.1016/j.asoc.2015.08.037.

[10] A. Sadollah, H. Eskandar, A. Bahreininejad, and J. H. Kim. Water cycle, mine blast and im-
proved mine blast algorithms for discrete sizing optimization of truss structures. Computers
& Structures, 149, (2015), pp. 1–16. doi:10.1016/j.compstruc.2014.12.003.

[11] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi. Mine blast algorithm for op-
timization of truss structures with discrete variables. Computers & Structures, 102, (2012),
pp. 49–63. doi:10.1016/j.compstruc.2012.03.013.

[12] O. Hasançebi and S. K. Azad. Adaptive dimensional search: a new metaheuristic algo-
rithm for discrete truss sizing optimization. Computers & Structures, 154, (2015), pp. 1–16.
doi:10.1016/j.compstruc.2015.03.014.

[13] V. Ho-Huu, T. Nguyen-Thoi, M. Nguyen-Thoi, and L. Le-Anh. An improved con-
strained differential evolution using discrete variables (D-ICDE) for layout optimiza-
tion of truss structures. Expert Systems with Applications, 42, (20), (2015), pp. 7057–7069.
doi:10.1016/j.eswa.2015.04.072.

[14] V. Ho-Huu, T. Nguyen-Thoi, T. Vo-Duy, and T. Nguyen-Trang. An adaptive elitist differential
evolution for optimization of truss structures with discrete design variables. Computers &
Structures, 165, (2016), pp. 59–75. doi:10.1016/j.compstruc.2015.11.014.

[15] V. Ho-Huu, T. Nguyen-Thoi, L. Le-Anh, and T. Nguyen-Trang. An effective reliability-
based improved constrained differential evolution for reliability-based design opti-
mization of truss structures. Advances in Engineering Software, 92, (2016), pp. 48–56.
doi:10.1016/j.advengsoft.2015.11.001.

[16] K. Deb. An efficient constraint handling method for genetic algorithms. Computer Meth-
ods in Applied Mechanics and Engineering, 186, (2), (2000), pp. 311–338. doi:10.1016/S0045-
7825(99)00389-8.

[17] G. C. Onwubolu. Differential evolution for the flow shop scheduling problem. In New Op-
timization Techniques in Engineering, pp. 585–611. Springer, (2004). doi:10.1007/978-3-540-
39930-8 24.

[18] A. Kaveh, B. Mirzaei, and A. Jafarvand. An improved magnetic charged system search for
optimization of truss structures with continuous and discrete variables. Applied Soft Comput-
ing, 28, (2015), pp. 400–410. doi:10.1016/j.asoc.2014.11.056.

http://dx.doi.org/10.1016/j.advengsoft.2013.09.006
http://dx.doi.org/10.1016/j.advengsoft.2014.01.002
http://dx.doi.org/10.1016/j.compstruc.2014.04.006
http://dx.doi.org/10.1016/j.asoc.2015.08.037
http://dx.doi.org/10.1016/j.compstruc.2014.12.003
http://dx.doi.org/10.1016/j.compstruc.2012.03.013
http://dx.doi.org/10.1016/j.compstruc.2015.03.014
http://dx.doi.org/10.1016/j.eswa.2015.04.072
http://dx.doi.org/10.1016/j.compstruc.2015.11.014
http://dx.doi.org/10.1016/j.advengsoft.2015.11.001
http://dx.doi.org/10.1016/S0045-7825(99)00389-8
http://dx.doi.org/10.1016/S0045-7825(99)00389-8
http://dx.doi.org/10.1007/978-3-540-39930-8_24
http://dx.doi.org/10.1007/978-3-540-39930-8_24
http://dx.doi.org/10.1016/j.asoc.2014.11.056

	1. INTRODUCTION
	2. TRUSS SIZING OPTIMIZATION
	2.1. Problem formulation
	2.2. Constraint handling

	3. PROPOSED EVOLUTIONARY-BASED OPTIMIZATION ALGORITHM
	4. TEST PROBLEMS
	4.1. Ten-bar planar truss
	4.2. Twenty-five-bar space truss
	4.3. Seventy-two-bar space truss

	5. RESULTS
	5.1. Ten-bar truss
	5.2. Twenty-five-bar truss
	5.3. Seventy-two-bar truss

	6. CONCLUSION
	REFERENCES

