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Abstract. In this paper responses of beams subjected to random loading are analyzed by
the dual approach of the equivalent linearization method. The external random loading is
assumed to be a space-wise and time-wise white noise in which the exact solutions of the
modal equations can be found. A system of nonlinear algebraic equations for linearization
coefficients of the modal linearized system is obtained in a closed form and is solved by
the fixed-point iteration method. Results obtained from the proposed dual criterion are
compared with the exact solution and those obtained from other approaches including
energy method, and conventional linearization method. It is observed that the solution
obtained by the dual criterion is in good agreement with the exact solution, especially, in
the case of strong nonlinearity of beam.

Keywords: Random vibration, equivalent linearization, dual criterion, modal response,
nonlinear beam.

1. INTRODUCTION

Over decades, the equivalent linearization (EQL) is one of the most extensively
used methods in investigating mechanical systems. The earliest researches on the EQL
method were carried out by Booton [1], Kazakov [2] and Caughey [3,4]. The fundamental
idea of the method lies on replacing the original nonlinear system under a random exter-
nal excitation by a linearized system under the same excitation in which linearization co-
efficients are found from a specified optimal criterion, for example, the mean-square error
criterion [4], spectral criterion [5]. This method has developed and been applied success-
fully to find approximate responses of nonlinear system subjected random excitation. For
discrete systems with single- and multi-degree-of-freedom, studies using the equivalent
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linearization can be found in some works [6–11], review articles [12–16], and in mono-
graphs by Crandall and Mark [17], Lin [18], Roberts and Spanos [19], Socha [5] with ref-
erences therein. For continuous systems, the method of EQL is also applied [14, 20–26].
In vibration analysis of beam structures under random excitations, the EQL method is
studied by several authors. In Ref. [21], Herberts considered the effect of the mem-
brane force on the stresses in a simply supported Bernoulli-Euler beam by the method
of EQL. Seide [22] investigated nonlinear mean-square multimode responses of beams
subjected to uniform pressure uncorrelated in time. Using EQL method, he obtained
mean-square stresses and displacements of beams with arbitrary end conditions. Iwan
and Whirley [23] developed a version of the EQL that can be applied to continuous sys-
tems under non-stationary random excitations. Their technique allows the replacement
of the original nonlinear system with a time-varying linear continuous system. In [24,25],
a new technique of equivalent linearization method is proposed based on the energy ap-
proach. Unlike the traditional replacement of EQL method [3, 4], the energy method
requires that the mean-square error between the potential energy of the original nonlin-
ear system and that of corresponding linearized system must be minimum. In [26], Anh
et al. extended the approach of regulated equivalent linearization (RGEL) in studying
single-degree-of-freedom system to random vibration analysis of beams under random
loadings. The effective of the RGEL method is recorded by its excellent performance in
calculating approximate modal responses of the beam.

Recently, Anh et al. [27] have proposed a dual criterion of the EQL method for non-
linear single-degree-of-freedom systems under random excitations. The authors showed
that the accuracy of the mean-square response obtained by the dual criterion is signif-
icantly improved when the nonlinearity is increasing. This dual approach is then ex-
tended to cases of multi-degree-of-freedom systems [28].

Naturally, the dual approach may be extended to random vibration analysis of
many continuous systems. In this research, a version of dual criterion of the EQL method
is developed for analyzing modal responses of beams subjected to random loading. A
nonlinear algebraic system of linearization coefficients obtained in a closed form is solved
by an iteration method. To elucidate the dual approach, the obtained results are com-
pared with those of the conventional linearization and energy methods.

2. THE GOVERNING EQUATION OF BEAM

Consider the governing equation of a beam on elastic foundation, restrained at its
ends and subjected to a space-wise distributed time-dependent loading p (x, t) [24, 25]

EI
∂4w
∂x4 − N

∂2w
∂x2 + µA

∂2w
∂t2 + β

∂w
∂t

+ K f w = p (x, t) , (1)

where the axial force N is given by

N =
EA
2L

L∫
0

(
∂w
∂x

)2

dx. (2)
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Here, A and I are the area and inertia moment of the cross-section, respectively; E
is the elastic modulus, µ the mass density, β the viscous damping coefficient, L the length
of the beam, K f the stiffness of the elastic foundation; w (x, t) is the deflection of the beam.
In this paper, a space-wise and time-wise white noise loading p (x, t) is considered.

In order to solve (1) one expands p (x, t)in series [24]

p (x, t) =
∞

∑
n=1

qn (t) φn (x), (3)

where qn (t) (n = 1, 2, . . .) are zero-mean Gaussian white noise stationary random pro-
cesses with corresponding correlations

E [qm (t) qn (t + τ)] = 2πSmδmnδ (τ) , (m, n = 1, 2, . . .) (4)

in which δmn is the Kronecker-delta notation, δ (τ) is the Dirac-delta; the quantities Sn
(n = 1, 2, . . .) are constant spectral density values of random processes qn (t). The func-
tions φn (x) (n = 1, 2, . . .) in the series (3) are modal shapes satisfying the following rela-
tionships

d4φn

dx4 =
µA
EI

ω2
nφn, (5)

1∫
0

φmφndξ = δmn, ξ =
x
L

(6)

where ωn (n = 1, 2, . . .) are natural frequencies associated with free vibration of the sys-
tem (1) without the axial force, viscous damping, elastic foundation and external excita-
tion for a simply supported boundary condition

ω2
n =

n4EIπ4

µAL4 . (7)

Let the deflection function w (x, t) of the beam be expended in terms of an appro-
priate orthogonal set of modal shapes φn (x) as follows

w (x, t) =
∞

∑
n=1

wn (t) φn (x), (8)

where wn (t) is the modal contribution corresponding to nth-mode. Substituting Eq. (8)
into the expression of the axial force N in Eq. (2) yields

N =
EA
2L2

∞

∑
n=1

∞

∑
m=1

Knmwnwm, (9)

where it is denoted

Knm =

1∫
0

dφn

dξ

dφm

dξ
dξ = Kmn. (10)
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In view of Eqs. (5) and (6), the governing equation (1) takes the form

∞

∑
n=1

(
µAẅn + βẇn + K f wn + µAω2

nwn
)

φn −
EA
2L2

∞

∑
n=1

∞

∑
i=1

∞

∑
j=1

Kijwiwjwn
d2φn

dx2 = p (x, t) .

(11)
Multiplication of Eq. (11) by φm, integration over the length of the beam, and then

use of orthogonality conditions given in Eq. (6) yield a set of coupled nonlinear differen-
tial equations for modal amplitudes wm (t)

ẅm +
β

µA
ẇm + ω2

mwm +
K f

µA
wm +

E
2µL4

∞

∑
n=1

∞

∑
i=1

∞

∑
j=1

KijKnmwiwjwn = bm (t) , (12)

where the random function bm (t) is given by

bm (t) =
1

µAL

L∫
0

p (x, t) φm (x) dx. (13)

Further in the expansion (8), it is assumed that only the first M modes of the beam
significantly contribute to formulate responses. Crandall and Yildiz [29] shown that if
the infinite series that are representing quantities such as displacement, mean-square
stresses, etc., converge, then the results can be made as accurate as desired by taking
sufficiently large M. For this reason, Eq. (12) can be taken by the following finite form
with the first M modes

ẅm +
β

µA
ẇm + ω2

mwm +
K f

µA
wm + Gm (w1, w2, . . . , wM) = bm (t) , (14)

in which nonlinear components Gm (m = 1, 2, . . . , M) are functions of M variables w1, . . . , wM

Gm = Gm (w1, w2, . . . , wM) =
E

2µL4

M

∑
n=1

M

∑
i=1

M

∑
j=1

KijKnmwiwjwn. (15)

Our objective is to find approximate mean-square modal responses of the beam
from the modal system (14). In the next section, the dual criterion of stochastic lineariza-
tion method will be applied to this nonlinear system.

3. A DUAL CRITERION FOR MODAL EQUATIONS OF BEAM

The dual criterion of stochastic linearization method appears from an idea that the
original nonlinear system can be replaced by an equivalent linearization system, and then
this equivalent system is replaced by another nonlinear system that belongs to the same
class of the original nonlinear system. Some obtained results using the dual criterion are
presented in works of Anh et al. [27,28] for single- and multi-degree-of-freedom systems
subjected to random excitations. Naturally, the dual criterion of stochastic linearization
needs to be developed in investigating continuous systems under random excitation. For
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the governing equation of the beam in the modal form (14), one can make a linearization
version as follows

ẅm +
β

µA
ẇm + ω2

mwm +
K f

µA
wm + ω2

mkeq,mwm = bm (t) , (16)

where keq,m (m = 1, 2, . . . , M) are non-dimensional linearization coefficients determined
from a specified criterion of stochastic linearization. We here utilize the dual criterion
[27, 28] for determining coefficients keq,m (m = 1, 2, . . . , M). In the first step, the original
nonlinear term Gm is replaced by a linearized one ω2

mkeq,mwm, and then the linear term
ω2

mkeq,mwm is replaced by another nonlinear quantity, λmGm, that can be considered as
a term belonging to the same class of the original function Gm, where the coefficients
keq,mand λm are determined from the following proposed criterion for beam vibration

e1 = E
[(

Gm −ω2
mkeq,mwm

)2
]
+ ρE

[(
ω2

mkeq,mwm − λmGm
)2
]
→ min

keq,m,λm
, (17)

with the detuning parameter ρ taking two values 0 or 1. When the parameter ρ is equal
to zero, the criterion (17) becomes the conventional mean-square error criterion which
can be found in the literature. On the other hand, as the parameter ρ is taken to be
1, the criterion (19) is so-called dual one. In this criterion, the first expectation can be
understood as a component of the conventional replacement, whereas the second one
describes a dual replacement of the linearization problem. Similar to the conventional
linearization (see [6]), the criterion (17) leads to that partial derivatives of the expression
e1 with respect to variables keq,m and λm are equal to zero

∂e1

∂keq,m
= 0,

∂e1

∂λm
= 0, (m = 1, 2, . . . , M). (18)

The system (18) yields a set of algebraic equations of variables keq,m and λm,
(m = 1, 2, . . . , M) as follows(

(1 + ρ)ω2
mE
[
w2

m
])

keq,m = (E [wmGm]) (1 + ρλm) ,

λm =

(
ω2

m
E [wmGm]

E [G2
m]

)
keq,m.

(19)

Solving the system (19) for unknowns keq,m and λm, we arrive at

keq,m =
1

ω2
m

1
1 + ρ− ρηm

E [wmGm]

E [w2
m]

, (20)

λm =
ηm

1 + ρ− ρηm
, (21)

where

ηm =
(E [wmGm])

2

E [w2
m] E [G2

m]
. (22)

It is observed that, using the dual criterion (17), the original nonlinear Eq. (14) of
modes of beam vibration is replaced by its linearization version (16), in which lineariza-
tion coefficients keq,m (m = 1, 2, . . . , M) are determined from expressions (20)-(22). In the
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framework of this article, the dual criterion (17) is elucidated for random vibrations of a
simply supported beam under a space-wise and time-wise white noise loading.

4. RESPONSES OF A SIMPLY SUPPORTED BEAM AT BOTH ENDS

4.1. Equivalent linearization coefficients
For a simply supported beam, one has the following expression for the modal

shape φm [25]
φm (ξ) =

√
2 sin (mπξ) . (23)

Using the expressions (10) and (23), one obtain

Knm = Kmn =

1∫
0

dφn

dξ

dφm

dξ
dξ =

{
π2m2 if m = n,
0 if m 6= n. (24)

Eq. (14) becomes

ẅm +
β

µA
ẇm + ω2

m

(
1 +

α

m4

)
wm +

ω2
m

2R2m2

M

∑
n=1

n2w2
nwm =bm (t) , (25)

where

ω2
m = ω2

0m4, ω2
0 =

EIπ4

µAL4 , α =
K f

µAω2
0

, R =

√
I
A

. (26)

The nonlinear functions Gm (m = 1, 2, . . . , M) in Eq. (25) take the form

Gm =
ω2

m
2R2m2

M

∑
n=1

n2w2
nwm. (27)

Substituting expressions Gm (m = 1, 2, . . . , M) from Eq. (27) into Eq. (20) yields

keq,m =
1

2R2m2
1

1 + ρ− ρηm

M
∑

n=1
n2E

[
w2

nw2
m
]

E [w2
m]

, (28)

where

ηm =

M
∑

i=1

M
∑

j=1
i2 j2E

[
w2

i w2
m
]

E
[
w2

j w2
m

]
E [w2

m]
M
∑

i=1

M
∑

j=1
i2 j2E

[
w2

i w2
j w2

m

] . (29)

It is noted that, to calculate higher-order moments in Eqs. (28) and (29), we em-
ploy the following generalized formula expressed in terms of second-order moments of
Gaussian random processes with zero-mean [30]

E [z1z2 . . . z2m] = ∑
all independent pairs

(
∏
j 6=k

E
[
zjzk

])
, (30)
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where the number of independent pairs is equal to (2m)!
/
(2mm!). Particularly, in view of

the present dual method for beam vibration, the following higher-order moment terms
will appear

E
[
w2

mw2
n
]
= E

[
w2

m
]

E
[
w2

n
]
+ 2 (E [wmwn])

2 = ymmynn + 2y2
mn,

E
[
w2

j w2
j w2

m

]
= E

[
w2

i
]

E
[
w2

j

]
E
[
w2

m
]
+ 2

(
E
[
wiwj

])2 E
[
w2

m
]

+ 2
(
E
[
wjwm

])2 E
[
w2

i
]
+ 2 (E [wiwm])

2 E
[
w2

j

]
+ 8E

[
wiwj

]
E
[
wjwm

]
E [wiwm]

= yiiyjjymm + 2y2
ijymm + 2y2

jmyii + 2y2
imyjj + 8yijyjmyim,

(31)

where the notation ymn for the second moment of wm is introduced

ymn = ynm = E [wmwn] . (32)

Substituting expressions (31) in Eq. (28), we arrive at

keq,m =
1

2R2m2
1

1 + ρ− ρηm

M

∑
n=1

n2 ynnymm + 2y2
mn

ymm
, (33)

where

ηm =

M
∑

i=1

M
∑

j=1
i2 j2

(
yiiymm + 2y2

im
) (

yjjymm + 2y2
jm

)
ymm

M
∑

i=1

M
∑

j=1
i2 j2

(
yiiyjjymm + 2y2

ijymm + 2y2
jmyii + 2y2

imyjj + 8yijyjmyim

) . (34)

For purpose of comparing the present dual criterion with other methods, in this
paper, we also present two known results of the conventional linearization [21, 22], and
energy method [24, 25]. From the linearized system (16), the following expressions of
the equivalent linearization coefficients keq,m (m = 1, 2, . . . , M) are obtained using the
conventional linearization method

keq,m conventional =
1

2R2m2

M

∑
n=1

n2 ynnymm + 2y2
nm

ymm
. (35)

It is observed that the expression (35) is also obtained from (33) by taking the de-
tuning parameter ρ be zero. The linearization method based on energy criterion gives the
equivalent coefficients keq,m (m = 1, 2, . . . , M) obtained from the following system [24,25]{

1 + α + k1,eq, 24
(

1 +
α

24 + k2,eq

)
, . . . , M4

(
1 +

α

M4 + kM,eq

)}T

=
2

ω2
0

A−1 {E
[
w2

1U
]

E
[
w2

2U
]

. . . E
[
w2

MU
]}T

,
(36)
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where the matrix A and potential energy U of the system are determined as follows

A =


E
[
w2

1w2
1

]
E
[
w2

1w2
2
]

. . . E
[
w2

1w2
M
]

E
[
w2

2w2
1

]
E
[
w2

2w2
2
]

. . . E
[
w2

2w2
M
]

. . . . . . . . . . . .
E
[
w2

Mw2
1

]
E
[
w2

Mw2
2
]

. . . E
[
w2

Mw2
M
]
 , (37)

U =
ω2

0
2

 M

∑
m=1

(
α + m4

)
w2

m +
1

4R2

(
M

∑
m=1

m2w2
m

)2
 . (38)

To get a closed form of the equivalent linearization coefficients keq,m (m = 1, 2, . . . , M)
in Eq. (33), we utilize responses of the linearized (16) via spectral density of the external
excitations.

4.2. Responses of the linearized system
For the linearized system (16) under the random excitation b, one can obtain second-

order moments E [wmwn] of the responses wm as follows (see [19] for details)

E [wmwn] =

∞∫
−∞

Hm (−ω) Bmn (ω) Hn (ω) dω, (39)

where

Bmn (ω) =
Smδmn

(µA)2 , (40)

and the frequency-response function Hm (ω) is given by

Hm (ω) =
1(

1 + α
m4 + keq,m

)
ω2

m −ω2 + i β
µA ω

. (41)

Because Bmn (ω) given by (40) are constants, moments E [wmwn] can be rewritten as

E [wmwn] = Bmn

∞∫
−∞

Hm (−ω) Hn (ω) dω. (42)

Introducing (41) into the right-hand side of the expression (42) and employing
residual theorem in theory of complex variable functions, we get

ymn = E [wmwn] =
4πβBmn

µA

{[(
1 +

α

m4 + keq,m

)
ω2

m −
(

1 +
α

n4 + keq,n

)
ω2

n

] 2

+2
(

β

µA

)2 [(
1 +

α

m4 + keq,m

)
ω2

m +
(

1 +
α

n4 + keq,n

)
ω2

n

]}−1

.
(43)

It is seen that a closed system of nonlinear algebraic equations for unknowns keq,m
(m = 1, 2, . . . , M) is obtained by substituting (43) in to the right hand side of Eq. (33). As
noted before, because the contribution of the first modes of the system is significant, we
here restrict our calculations for modal responses of the beam in two cases: single-, and
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two-mode using three approaches: the conventional linearization, energy method, and
present dual criterion.

5. NUMERICAL RESULTS AND DISCUSSIONS

It is seen that, in Eq. (25) for vibrational modes, as R tends to infinity, the effect of
nonlinear terms Gm(m = 1, 2, . . . , M) disappear. Therefore, one can view the magnitude
of the quantity 1/R as the parameter related to the magnitude of nonlinearity of the
original nonlinear system (25). Assume that spectral densities (m = 1, 2, . . . , M) of the
stochastic processes qm (t) have the same value, i.e. S1 = S2 = . . . = SM = S0. For this
assumption, from the Fokker-Planck equation corresponding to the system (25), the exact
expression of the probability density function can be obtained [24]

P (w1, w2, . . . , wM) =
1
C

exp

−βµAω2
0

2πS0

 M

∑
m=1

(
α + m4

)
w2

m +
1

4R2

(
M

∑
m=1

m2w2
m

)2


=
1
C

exp
{
−βµA

πS0
U (w1, w2, . . . , wM)

}
,

(44)
where U = U (w1, w2, . . . , wM) is the potential energy of the system (25) given by (38),
and C is the normalization constant

C =

∞∫
−∞

. . .
∞∫
−∞︸ ︷︷ ︸

M− f old

exp

−βµAω2
0

2πS0

 M

∑
m=1

(
α + m4

)
w2

m +
1

4R2

(
M

∑
m=1

m2w2
m

)2
 dw1 . . . dwM.

(45)
The exact modal mean-square response of Eq. (25) is evaluated by the following

multiple integral with M-fold

E
[
w2

m

]
exact

=
1
C

∞∫
−∞

. . .
∞∫
−∞︸ ︷︷ ︸

M−fold

w2
mexp

− βµAω2
0

2πS0

 M

∑
m=1

(
α+m4

)
w2

m+
1

4R2

(
M

∑
m=1

m2w2
m

)2
 dw1 . . . dwM.

(46)
In general, the multiple integral (46) must be calculated using a numerical method.

In the following computation, we use the exact solution (46) in the case of single-mode
(M = 1) and of two-mode (M = 2) to elucidate the accuracy of the proposed dual
criterion method (33), and other methods for comparison purpose.

5.1. The case of single-mode
For the single-mode, M = 1, the governing equation of the simply supported beam

(25) takes the form

ẅ1 +
β

µA
ẇ1 + ω2

0 (1 + α)w1 +
ω2

0
2R2 w3

1 =
1

µA
q1 (t) . (47)
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This is the well-known Duffing oscillator subjected to random excitation [4, 5].
From Eq. (46), one can get an exact solution of mean-square response of w1 in Eq. (47) as
follows (see also [22, 26])

E
[
w2

1
]
exact, 1 =

∞∫
−∞

w2
1 exp

{
− βµA

πS0

(
1
2 ω2

0 (1 + α)w2
1 +

ω2
0

8R2 w4
1

)}
dw1

∞∫
−∞

exp
{
− βµA

πS0

(
1
2 ω2

0 (1 + α)w2
1 +

ω2
0

8R2 w4
1

)}
dw1

= (1+α)R2

[
K3/4

(
(1+α)2

4
R2

R2
01

)
−K1/4

(
(1+α)2

4
R2

R2
01

)]/
K1/4

(
(1+α)2

4
R2

R2
01

)
,

(48)
where Kν (y) is the modified Bessel function of the second kind of order ν of the variable
y, and the quantity R01 is given by

R01 =

√
πS0

β (µA)ω2
0

. (49)

Using Eqs. (43) and (28) for M = 1, we get the following single-mode approxi-
mate mean-square response E

[
w2

1

]
depending upon the nonlinear parameter 1/R in the

following form

E
[
w2

1
]
dual,1 =

2R2
01

1 + α +

√
(1 + α)2 + 30

7
R2

01
R2

. (50)

Similarly, approximate mean-square responses of w1 corresponding to the conven-
tional linearization (35) and energy method (36) in the case of single-mode are obtained,
respectively,

E
[
w2

1
]
conventional,1 =

2R2
01

1 + α +

√
(1 + α)2 +

6R2
01

R2

, (51)

E
[
w2

1
]
energy,1 =

2R2
01

1 + α +

√
(1 + α)2 +

5R2
01

R2

. (52)

Numerical results for the first mode of beam vibration in the case of single-mode
using four methods, including the exact solution (48), conventional linearization (51), en-
ergy method (52), and dual criterion method (50) are illustrated in Tabs. 1 and 2. The sys-
tem parameters are ω0 = 1, β = 0.1, µA = 1. Tab. 1 shows a comparison of relative errors
between results obtained from approximate and exact solution methods. The stiffness pa-
rameter α of the system is fixed at 1, whereas the nonlinearity parameter 1/R varies from
0.01 to 10.0. It is seen that, for small values of 1/R, for example 1/R = 0.01, 0.02, 0.05,
the conventional linearization yields quite small errors, about 0.05%, whereas errors of
the energy and dual criterion methods are larger. In the range [1, 10] of 1/R, the error
of conventional linearization becomes larger 10% while that of the energy method and
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Table 1. Mean-square response of w1 of the simply supported beam in case of single-mode with
ω0 = 1, α = 1, β = 0.1, µA = 1, S0 = 1 and various values of 1/R (CL: Conventional

Linearization; EM: Energy Method; DM: Dual Criterion Method)

1/R E
[
w2

1
]
exact,1 E

[
w2

1
]
CL,1 Error (%) E

[
w2

1
]
EM,1 Error (%) E

[
w2

1
]
DM,1 Error (%)

0.01 15.6895 15.6895 0.0001 15.6926 0.0195 15.6948 0.0335
0.02 15.6349 15.6346 0.0014 15.6468 0.0761 15.6554 0.1317
0.05 15.2778 15.2707 0.0466 15.3403 0.4086 15.3907 0.7388
0.10 14.2613 14.1964 0.4549 14.4101 1.0437 14.5706 2.1690
0.20 11.9200 11.6419 2.3324 12.0674 1.2370 12.4086 4.0991
0.50 7.3952 6.8668 7.1448 7.3248 0.9518 7.7220 4.4191
1.00 4.4131 3.9581 10.3102 4.2767 3.0909 4.5614 3.3618
2.00 2.4261 2.1276 12.3034 2.3146 4.5968 2.4842 2.3928
5.00 1.0294 0.8890 13.6400 0.9712 5.6599 1.0463 1.6388
10.00 0.5251 0.4510 14.1093 0.4934 6.0421 0.5322 1.3564

Table 2. Mean-square response of w1 of the simply supported beam in case of single-mode with
ω0 = 1, β = 0.1, µA = 1, S0 = 1, R = 1 and various values of α

α E
[
w2

1
]
exact,1 E

[
w2

1
]
CL,1 Error (%) E

[
w2

1
]
EM,1 Error (%) E

[
w2

1
]
DM,1 Error (%)

1.0 4.4131 3.9581 10.3102 4.2767 3.0909 4.5614 3.3618
2.0 4.0310 3.6844 8.5978 3.9549 1.8889 4.1930 4.0181
3.0 3.6976 3.4334 7.1448 3.6624 0.9518 3.8610 4.4191
4.0 3.4056 3.2038 5.9244 3.3975 0.2382 3.5629 4.6202
5.0 3.1489 2.9944 4.9075 3.1581 0.2921 3.2960 4.6714
6.0 2.9224 2.8036 4.0656 2.9422 0.6756 3.0573 4.6147
7.0 2.7218 2.6300 3.3715 2.7475 0.9442 2.8438 4.4840
8.0 2.5433 2.4721 2.8008 2.5719 1.1241 2.6528 4.3056
9.0 2.3840 2.3284 2.3324 2.4135 1.2370 2.4817 4.0991

10.0 2.2412 2.1975 1.9480 2.2703 1.3000 2.3281 3.8785

dual criterion are remaining about 6%. For large values of 1/R, for instance 1/R = 5,
1/R = 10, however, the error of the dual criterion method is smallest (about 2%).

In Tab. 2, the parameter 1/R is taken to be 1, the stiffness parameter α varies from
1.0 to 10.0, other parameters have the same values as in Tab. 1. It is observed that, the
dual criterion method gives a good prediction on response errors (about 5%) as α varies,
and the error of energy method is smallest.

5.2. The case of two-mode
Numerical computations used the fixed-point iteration method [25, 26] to find ap-

proximate mean-square response of the first mode of beam vibration are carried out for
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the nonlinear algebraic system (33) and (43) with unknowns km,eq in the case of two-mode.
The exact solution is obtained from the multiple integral (46) with M = 2. The obtained
numerical results are presented in Tabs. 3 and 4. Tab. 3 shows that, the error of dual cri-
terion method is in good agreement with that of the energy method. In Tab. 4, in general,
the dual criterion and energy method yield values that are close to the exact solutions
with different value of the stiffness parameter α.

Table 3. Mean-square response of w1of the simply supported beam in case of two-mode with
ω0 = 1, α = 1, β = 0.1, µA = 1, S0 = 1 and various values of 1/R

1/R E
[
w2

1
]
exact,1 E

[
w2

1
]
CL,1 Error (%) E

[
w2

1
]
EM,1 Error (%) E

[
w2

1
]
DM,1 Error (%)

0.01 15.6865 15.6866 0.0007 15.6901 0.0232 15.6921 0.0358

0.02 15.6233 15.6232 0.0006 15.6372 0.0887 15.6449 0.1385

0.05 15.2125 15.2050 0.0494 15.2847 0.4744 15.3290 0.7658

0.10 14.0574 13.9915 0.4688 14.2343 1.2587 14.3672 2.2039

0.20 11.4744 11.2121 2.2857 11.6951 1.9235 11.9358 4.0207

0.50 6.7777 6.3387 6.4772 6.8873 1.6175 7.0652 4.2423

1.00 3.9033 3.5576 8.8571 3.9627 1.5219 4.0385 3.4636

2.00 2.0923 1.8799 10.1519 2.1284 1.7243 2.1529 2.8951

5.00 0.8714 0.7764 10.9030 0.8891 2.0276 0.8936 2.5492

10.00 0.4414 0.3923 11.1312 0.4510 2.1828 0.4522 2.4529

Table 4. Mean-square response of w1of the simply supported beam in case of two-mode with
ω0 = 1, β = 0.1, µA = 1, S0 = 1, R = 1 and various values of α

α E
[
w2

1
]
exact,1 E

[
w2

1
]
CL,1 Error (%) E

[
w2

1
]
EM,1 Error (%) E

[
w2

1
]
DM,1 Error (%)

1.0 3.9033 3.5576 8.8571 3.9627 1.5219 4.0385 3.4636

2.0 3.5878 3.3203 7.4557 3.6862 2.7440 3.7299 3.9603

3.0 3.3112 3.1035 6.2725 3.4338 3.7025 3.4526 4.2703

4.0 3.0677 2.9058 5.2784 3.2038 4.4375 3.2038 4.4375

5.0 2.8526 2.7256 4.4511 2.9947 4.9812 2.9808 4.4929

6.0 2.6616 2.5616 3.7582 2.8047 5.3755 2.7807 4.4741

7.0 2.4915 2.4121 3.1849 2.6321 5.6419 2.6010 4.3960

8.0 2.3393 2.2760 2.7071 2.4752 5.8105 2.4394 4.2811

9.0 2.2026 2.1517 2.3090 2.3326 5.9016 2.2938 4.1422

10.0 2.0793 2.0383 1.9738 2.2027 5.9355 2.1623 3.9922
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6. CONCLUSIONS

The method of equivalent linearization is one of effective tools in solving random
vibration problems of mechanical systems. In this study, the modal responses of a simply
supported beam subjected to a space-wise and time-wise white noise loading are carried
out by the dual criterion of equivalent linearization. Our calculations are restricted in
two cases of single- and two-mode of beam vibrations. The exact solutions of the original
modal equation system obtained by Fokker-Planck equation are available for both cases.
A closed form of nonlinear algebraic system is obtained by the dual approach associated
with the frequency-response function method for the linearized modal system. In the
case of single-mode, the analytical solution of the first mode of the beam is easy to solve
explicitly for four methods considered (the exact solution, energy method, conventional
linearization and dual criterion method). Also, in the case of two-mode, the closed sys-
tem is solved by the fixed-point iteration method. Numerical results show that the dual
criterion gives a good prediction on the random responses of the beam, especially in the
range of strong linearity of system parameters. Further investigations for random vibra-
tions of other beam systems seem to be appropriate in order to verify the advantages of
the dual criterion.
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