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A FORM OF EQUATIONS OF MOTION OF 
CONSTRAINED MECHANICAL SYSTEMS 
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ABSTRACT. In the present paper a form of equations of motion of a constrained me­
chanical system is constructed. These equations only contain a minimum number of accel­
erations. In the other words, such equations are written in independent accelerations while 
the configuration of the system is described by dependent coordinates. It is important that 
the equations obtained are applied conveniently for . the mechanisms in which the use of 
independent generalized coordinates is not suitable. 

1. Introduction 

As known [5, 6], the use of holonomic coordinates for writting equations of 
motion is very convenient due to simplicity. However, in the case of constrained 
mechanical systems including holonomic systems, for example, in the problem of 
dynamics of mechanisms, the choice of independent coordinates in many case is 
impossible (in the case of mechanisms of closed loops). Moreover, in the problem 
of determining dynamic reactions of kinematic joints it is necessary to introduce 
redundant coordinates. Such a situation is related also to multibody systems, for 
example, kinematics and dynamics of robotics. 

2. Equations of motion of a mechanical system subjected to stationary 
constraints 

Let us consider a constrained mechanical system (holonomic and nonholonomic) 
of n degrees of freedom. 

Denote by qi , Qi (i = 1, m) the generalized coordinates and forces , respectively. 
In general, the generalized forces are functions of coordinates, velocities and 

time. 
Consider the system subjected to stationary constraints of the form 

m 

Lbo:i<ii = O; a = 1, s, 
i=l 

which can be written in the matrix form 

b q=O, 
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(2.1) 

(2.2) 



where b(q) is an (s x m) matrix, the elements of which are functions of coordinates, 
that is 

b = llb~ · ll - -~• a=l ,s i=l,rn' 

but q - the ( m x 1) matrix of generalized velocities: 

qT = llci1 ci2 · · · cirnll · 
The letter T at the high right corner designates the transposition. 

The kinetic energy of the system under consideration has the form 

T-~·TA · - 2q q, 

(2.3) 

(2.4) 

(2.5) 

where A is a quadratic , symmetric and nonsingular matrix of m order, the elements 
of which depend only on generalized coordinates. 

By the Principle of Compatibility [2] the equations of motion of the system under 
consideration can be written in the form 

Aq= Q+G+R, (2.6) 

where R is the matrix of unknown reaction forces of the constraints (2.1), which 
is defined by means of the condition for equations (2.6) being compatible with the 
constraint equations (2.1). 

Moreover, Q and G are the (m x 1) matrices: Q is the matrix of generalized 
forces, but G - the matrix of components including quadratic velocities. The latter 
matrix is defined by means of only the matrix of inertia A. The q denotes the 
matrix of generalized accelerations, which is an (m x 1) matrix too. 

Let us introduce the pseudovelocities ir a (CT = 1, n = m - s): 

rn 

ira = L faiqi, CT=l n=m-s 
' ' 

(2.7) 
i=l 

where f a i (a = 1, s. i = 1, m) are functions of generalized coordinates qi ( i = 1, m). 
Only one condition need to be imposed on the linear form (2. 7) 

det II~:: Ila-IS· a-In· i-1 m =IO. 
- , J - J , - ' 

(2.8) 

In the other words, ( n + s) linear forms must constitute a complete system made 
up linear independent form. By such a way the quantities ira (CT = 1, n = m - s) 
can take on arbitrary values. Solving the set of linear equations (2.1) and (2.7) in 
consideration of the condition (2.8) we get 

n 

qi = 2.:::: diaira, i = 1, m, 
a=l 

124 

(2.9) 



where diu (i = 1, m, <7 = 1, n) are functions of generalized coordinates qi (i = 1, m). 
In the matrix form the relations (2.9) can be written as 

q = D?i", (2.10) 

where D is the ( m x n) matrix, but 1i" is the ( n x 1) matrix of pseudovelocities. 
Derivating (2.10) we obtain 

(2.11) 

where D is the matrix, the elements of whi.ch consist of the derivatives of elements of 
the matrix D . Hereafter the matrix D is called the derivative matrix of the matrix 
D. 

As known [2], the condition of ideality of the constraints (2.1) gives us 

(2.12) 

Using the condition (2.12) in consideration of (2.11), the equation (2 .6) is written 
as 

(2.13) 

where 

(2.14) 

The equation (2.13) together with the constraint equation (2.2) describes the motion 
of the system under consideration. 

By such a way the motion of the system under consideration is described by a 
system of algebraic - differential equations. 

Note. Let us consider the case of constraints of the form 

In this case the coefficients in (2.1) must be calculated by the formula 

Ofa . - -
bai = -

0 
i = 1, m , a= 1,s. 

qi 

For illustration let us consider the following example. 

(2.15) 

(2.16) 

Example 1. A planar slider crank mechanism consists of a rigid crank, a rigid 
sliding block and two revolving and one translational joint. The crank is balanced 
and has the moment of inertia J 1 about its rotation axis. The lengths of the crank 
and connecting rod are denoted by r and L respectively, but the centre of gravity 
C of the connecting rod locates a distance a from the joint A. The sliding block 
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has the mass m3 . The driving moment acting on the crank is denoted by Md and 
the efficient resistance force by F. The friction at the joints is neglected. Write the 
equation of motion of the mechanism. 

Let us choose <p and () as generalized coordinates. They are redundant coordi­
nates because the mechanism has only one degree of freedom. It is easy to write the 
constraint equation 

f - r sin <p - L sin () = 0, (2.17) 

which can be written as follows 

j- rcosc.pcp- Leos BB= 0. (2.18) 

A 

Fig.1 

The kinetic energy of the mechanism is calculated by the formula 

1 [ ( . 2 ) 2] · 2 1 ( M 2 L2 . 2 B)B·2 T = - J1 + m 2 + m 3 sm <p r <p + - J2 + 2a + m3 sm 
2 2 
+ [m3L sin <p sin() - m2a cos( <p - B)]cpiJ. (2.19) 

The ( 2 x 2) matrix of inertia of the mechanism is of the form 

- II J1 + ( m2 + m3 sin
2 

<p )r
2 

m3L sin <p sin() - m2a cos( <p - B) II (2.20) 
A - m 3L sin <p sin() - m 1 a cos( <p - B) J2 + m2a2 + m3L2 sin2 

() • 

Let us choose c.p as an independent coordinate. The (2 x 1) matrix D in the 
formula (2.10) is of the form 

r cos <p II 
L cos() ' 

(2.21) 

and therefore 

I)T = Ila - ~(sin <p . - cos <p tg() e) II · 
L cos () <p cos () 

(2.22) 

The (2 x 1) matrix of generalized forces takes the form 

Q - llMd - (Fsinc.p - m2gcosc.p)rll 
- -(m2gacos() + FLsinB) · (2.23) 
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It is easily to calculate the (2 x 1) matrix G 

G = l·I m 3r L sin r.p cos() B~ - m 2a cos( r.p - B)<j;
2 

II 
-m3L2 sin() cos() ()2 - m2a sin( r.p - B)<j;2 · 

Equation (2.13) now will be 

11
1 '!:... cosr.pll x 

L cos() 

II 
11 + r 2

(m2 + m3 sin
2 r.p) [m3Lsinr.psin(J - m2acos(r.p - B)]r.11 

[m3L sin r.p sin B - m2a cos( r.p - B)]r J 2 + m2a2 + m 3L2 sin2 () 

= 111 _::... cos r.p II x 
L cos() 

x llMd - (Fsinr.p- m2gcosr.p)r + m3rLsinr.pcos(J~2 - m2arcos(r.p- B)<j;211 

-m2ga sin() cos() - FL sin() - m 3L2 sin() cos ()()2 - m 2ar sin( r.p - B)ij;2 

+ 111 ::... cos r.p 11 x 
L cos() 

(2 .24) 

1 
!:... cos r.p r.p 
L cos() 

II 

11 + (m2 + m 3sin2r.p)r2 [m3Lsinr.psinB- m2acos(r.p-B)]rll 
x [m3L sin r.p sin() - m2a cos( r.p - B)]r 12 + m 2a2 + m3L2 sin2 () x 

0 
x r (sin r.p . cos r.p () o) i{J . 

- L cos() r.p - cos() tg 

This equation is written as follows 

{ 
2 2 r cos r.p [ . ( )] 11 + (m2 + m3 sin r.p)r + L cos() m3L sm r.p - m2acos r.p - () r 

+ [m3r L sin r.p sin() - m2ar cos( r.p - B) + Lr cos r.p() ( J2 + m2a2 + m 3L2 sin2 B) J Lr cos r.p() }'P 
cos cos 

= Md - (F sin r.p - m 2g cos r.p )r + m 3r L sin r.p cos ()02 - m 2ar cos( r.p - B)<j;2 

+ !:... cos r.p() [ m2ga cos B sin B +FL sin B + m 3L2 sin B cos B 02 + m2ar sin( r.p - B)<P2] 
L cos 

- ~ { [ m 3L sin r.p cos() - m2a cos( r.p - B)] r 

r cos r.p ( 2 2 . 2 ) } (sin r.p . cos r.p ·) . + ---() 12 + m 2a + m 3L sm B --()r.p - --()tgBB r.p . 
L cos · cos cos 

This equation together with the algebraic equation (2.17) describes the motion of 
the crank slider mechanism. 
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3. Equations of motion of a mechanical system subjected to arbitrary 
constraints 

Let us consider a mechanical system subjected to the unstationary constraints 
of the form 

m 

Lba/Ji+ba=O, a=l,s. (3.1) 
i=l 

Unlike above, the coefficients bai and ba are the functions of generalized coordinates 
and time. 

In the matrix form the equations (3.1) can be written as 

bq + b0 = 0, (3.2) 

where b(q, t), b0 (q, t) are the (s x m) and (s x 1) matrices respectively. 
The kinetic energy of such a system can be calculated by the expression 

(3.3) 

The functions 7'?, (i = 0, 1, 2) are homogeneous functions of ith degree, which take 
the following forms 

,.,, 1 TA . T A . ,.,, A 
.L2 = , ~q 2q, 1 = 1q, .LO= o, (3.4) 

where A 1 , A 2 respectively are the (m x m) and (1 x m) matrices, the elements of 
which depend on generalized coordinates and time, but A0 is a function of general­
ized coordinates and time too. 

By introducing the pseudovelocities in accordance with (2.7), we can express the 
generalized velocities in term of pseudovelocities, that is 

n 

Qi= I.: dia*a +di , i = 1, m, (3.5) 
a=l 

which can be written in the matrix form 

q = D1i' + d, (3.6) 

where D and dare respectively the (m x n) and (m x 1) matrices, the elements of 
which are the functions of generalized coordinates and time. 

As above, by applying the Principle of Compatibility the equations of motion of 
the system under consideration can be written as follows 

A2q = Q + G + Q9 + Q0 + R, (3.7) 
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As a?ove, Q is t~e 1?atrix ~f generalized forces , R - the matrix of generalized --------
reaction forces, satisfymg the ideal conditions (2 2) G th t · f · 
f 

. . . . , - e ma nx o components 
O quadratic velocities defined only by means of the matrix A

2
. 

The matrix Q9 and Q0 are the ( m x 1) matrices, which consist of elements Q~ 
and Q? respectively, that are i 

i = 1,m, (3.8) 

(3 .9) 

In consideration of (2.12) and (3.6) the equation (3.7) will take the following form 

(3.10) 

where D0 = DT A 2D, D and d are the (m x 1) derivative matrices of D and d 
respectively. 

Equation (3.10) together with (3.2) describes the motion of the system under 
consideration. We have obtained then a system of algebraic - differential equations. 

In order to determine the reaction forces of the constraints (3.2) it is possible to 
apply the equations (3.7), that is 

(3.11) 

where q is calculated by (2.11) in consideration of (3.10) , (2.10) and (2.11) . 
Of course, in the case of stationary constraints we have: 

Qg - O; Q0 = 0, d = 0. (3.12) 

By putting these quantities into (3.10) we immediately obtain (2.13) . 

Example 2. Consider a hammer grinder. The rotat ing drum is a homogeneous 
cylinder of radius R and the moment of inertia J0 about the rotation axis. The 
hammer of mass m is connected to the drum by the revolution joint A located 
distance R from the axis 0 . The moment of inertia of the hammer about its centre 
of gravity C is denoted by J with AC = a. The drum rotates informly with angular 
velocity w0 . Write the equ~tion of motion of the hammer grinder and determine the 
reaction forces at the revolution joint A (Fig. 2) . 

For determining the reaction forces at the hinge A let us release the hammer 
from the drum and consider the released system shown in Fig. 3. 

Denote the generalized coordinates by () , u , v. The kinetic energy of the released 
system is calculated by means of the expression (3.3) ; in which 
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1 2 ·2 1 2 1 2 . . . 
T2 = 2(1 +ma )e + 2mu + 2mv - ma sin Bue+ macosOsinOve, (3.13) 

T1 = mRawo cos(e - w0t)iJ - mRw0 sinw0tcosw0tu + mRw0 cosw0tv, (3.14) 
1 2 2 To= 2(Jo + mR )w0 . (3.15) 

o~0-0 

I \ ............. A 

I -""" ..... ,,,___ 

Fig. 2 

We have then the (3 x 3) matrix A 2 

1+ma2 

A 2 = -masinO 
ma cos(} 

Fig. 3 

-ma sin(} ma cos (} 
m 0 
0 m 

but the (1 x 3) matrix Ai and the function A0 are 

v 

Ai= llmRaw0 cos((}-w0t) -mRw0 sinw0t mRwocoswotll, 

1 2) 2 A0 = 2 ( J + mR w0 . 

The constraint equations are of the following form 

u =0, 

v = 0. 

Let us choose e as a independent coordinate. 
The (3 x 1) matrix D takes the form 

DT = 111 0 011 . 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 



For writting the equations (3.10) let us calculate the (3 x 1) matrices Q, G, Qg and 
Qo 

QT = II - mga sin(} mg Oil, (3.22) 
GT = llO macoseiJ2 · masinee2 11 , (3.23) 

Q9 = II ·- mRasin(e - wot)w5 mRw5 sin wot mRw5 cosw0tllT, Q0 = 0, (3.24) 

J+ma2 - masinB macose 1 
D~ = DT A2D = 111 0 011 -ma sine m 0 0 = J +ma2. 

macose 0 m 0 
(3.25) 

Besides 

D = 0, d = 0, d = 0. (3.26) 

Therefore, the right member of the equation (3.10) will be 

-mga cos e - mRa sin( e - Wot )w5 
Ill OOll mg+masinet92 +mRw5sinw0t 

ma sin(} tJ2 + mRw5 COS Wot 

= - ma[gcose + Rsin(e - wot)w5J. (3.27) 

The equation (3.10) will be now 

(J + ma2 )iJ = -ma[gcose + Rsin(e - wot)w5], (3.28) 

which describes the motion of the hammer grinder under consideration. 
The reaction force RT = llRo Ru Rull is defined by the equations (2.12) and 

(3.11) in consideration of ii,= 0, ii= 0, that is 

Ro J + ma2 - ma sine 

Ru - ma sine m 
Ru macose 0 

Ro 
111 0 011 Ru 

Ru 

macose 
a 
m 

=0, 

e 
0 
0 

(3.29) 

-ma[gcose + Rsin(e -w0t)w5J 
mg + ma COS (}tJ 2 + mRw5 sin W0 t 

ma sin(} tJ2 + mRw5 Sin Wot 
(3.30) 

By these equations we get 

Ro = 0, (3.31) 

Ru = -ma sin(} ij -:-- mg - ma COS(} tJ2 
- mRw5 Sin Wot, (3.32) 

Rv = ma cos e ij - ma sine e2 
- mRw5 cos Wot, (3.33) 
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where () is calculated by (3.28). 

It is easy to notice that Ru and Ru just are the vertical and horizontal components 
of reaction forces at the hinge A. 

4. Conclusion 

The represented method and the obtained equations are convenient to investigate 
mechanisms with closed loops and to determine the reaction forces at kinematic 
joints. Such equations are also applied usefully for constrained mechanical systems 
(holonomic and nonholonomic) 

This publication is completed with financial support from The council for Natural 
Science of Vietnam. 
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MQT DANG PHUONG TRINH CHUYEN DQNG CUA CAC H~ CH~U LIEN KET 

Trong bai bao de xuat m9t .. 'd;~mg phmmg trlnh chi chua cac gia toe d(>c l~p khi 
cau hlnh cua CO' h~ (holonom va khong holonom) dtrqc mo ta nha cac t9a d(> suy 
r9ng thua. Nhu da biet th~m chi trong truang hqp ca h~ h616n6m vi~c ch9n t9a d9 
suy n?ng d9c l~p khong phru hJ.c nao ding thu~n ti~n , vi dl,l trong trtrang hqp cac 
CO' cau v&i cac chuoi dong. Doi v&i trtrang hqp nay vi~c ap dl,lng cac phtrang trlnh 
duqc dtra ra trong bai bao to ra rat ti~n lqi. Cac phtrang trlnh nhtr v~y cilng giup 
cho vi~c xac d!nh CaC phan l\fC t0i cac khc:Jp d(>ng CUa CaC CO' cau dtrqc de dang. 
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