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ABSTRACT. A high-order displacement field in quadrilateral element with nine nodes 
and twelve-degrees-of-freedom per node is developed for bending analysis of thick arbitrary 
layered composite plates under transverse loads. Results for plate deformations, internal 
stress-resultants and stresses for selected examples are shown to compare well with the 
closed-form and other finite element solutions. 

1. Int roduction 

The layered composite plate has been popular in many engineering applications 
since it has some beneficical properties such as large strength-to-weight ratios and 
desired directional strengths. Thus, the analysis of layered composite plates is under 
intensive research. Some studies [1, 2] have shown that the transverse shear effect 
was quite significant in the layered composite plates due to the high ratio of inplane 
modulus to transverse shear modulus. Consequently the classical plate theory is 
not suitable for layered composite plates of moderate thickness. Some researchers 
have used the Reissner-Mindlin plate bending theory [1, 2], which includes transverse 
shear deformations. In this theory, the transverse shear strains are constant through 
the thickness of plate. Thus, a transverse shear correction factor is introduced to 
the theory. The Reissner-Mindlin plate theory results in more accurate solutions 
than the classical plate theory when compared with the three-dimensional elasticity 
solutions. However , the Reissner-Mindlin solutions become quite unsatisfactory as 
the plate thickness-side length ratio increases. Thus, more refined high-order plate 
bending theories have been proposed [3-6]. For example, Reddy [4] presented a sim­
ple high-order theory, in which in-plane displacement components are expanded as 
cubic functions of the thickness coordinate and transverse displacement is constant 
through the plate thickness to obtain the closed form solution for the composite 
plate bending problem. Basing on the Reddy type of theory and by finite ele­
ment method, Pandya and Kant [5] analyzed the unsymmetric laminated composite 
plates under transverse loads. Kwon and Akin [6] used linear displacements in x , 
y-directions, and quadratic transverse displacement in z-direction for the analysis 
of layered composite plates. 
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In this paper, a full third-order plate bending theory is used, in which both 
in-plane and out-of-plane displacement components are assumed to ha:ve cubic vari­
ations through the thickness of the plate. In the following sections,. the formulation 
of a high-order plate bending equation and its quadrilateral finite elements with 
108 degrees of freedom per element are given. Sections 4 and 5 present some finite 
element numerical results and conclusions. 

2. A full third-order plate bending theory 
2.1. Displacement and strain fields 

The present analysis is based upon a displacement field in which the displacement 
components u, v, w are all of third-order in the thickness coordinate z [9], [10]: 

u = uo(x, y) + z'11x(x, y) + z2ex(x, y) + z3</>x(x, y) 
v = vo(x, y) + zWy(x, y) + z2ey(x, y) + z3 </>y(x, y) (2.1) 
w = wo(x, y) + zw z(x, y) + z2ez(x, y) + z3 cf>z(x, y) 

Geometrically, u0 , v0 and w0 are the translations along the x, y and z axes respec­
tively, and Wx, Wy denote rotations about they and x axes, respectively. The rest of 
the unknown coefficients are the higher-order deformation terms in the Taylor series 
expansion and are also defined at the mid-plane. 

The strain-displacement relations are obtained as folows: 
2 3 A A A 

(ex, cy, Cz) = (cox, coy, coz) + z(kx, ky, kz) + z (Eox, Eoy, Eoz) + z (kx, ky, kz)· 

in which 

cox= Uo1x; coy= Vo1y; COz = Wz; rOxy = Uo1y + Vo1x; 

rOxz = Wo1x + Wx; rOyz = Wo1y + Wy 

kx = ex'x; ky = ey1y; kz = 2~z; kxy = '1lx1y + '1ly1x; 

kxz = Wx'z + 2ex; kyz = 'l/Jy'z + 2ey; 

Eox = ex1x; Eoy = ey1y; Eoz = 3</>z; 

i'oxy = ex'y + ey1x; i'oxz = ex'z + 3</>x; i'oyz = ey'z + 3</>y; 

(2.2a) 

(2.2b) 

(2.3) 

kx = cf>x'x; ky = c/>y1y; kz = O; kxy = cf>x1y + </Yyix; kxz = cf>x1z; kyz = c/>y'z · 

2.2. Constitutive relations of thick laminated composite 

Refering to the principal material coordinate axes (1, 2, 3) and reference axes 
(x, y, z) of kth orthotropic layer, the stress-strain relations can be written as: 

{ 0"11, 0"22, 0"33, 0"23, 0"13, 0"12}: = [ cij] k {en, c22, c33, !23, !13, !12}: (2.4) 
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where: cij and c:j are the stiffness coefficients of k-material layer in (1, 2, 3) and 
(x, y, z) axes, respectively. T he relation between Cii and C~i is expressed by: 

(2.6) 

ill which, T;;1 is an inverse matrix of the stress transformation matrix Tu; Tt:- 1 is an 
inverse matrix of the strain transformation matrix, Tt:, and clearly the Cij can be 
written in terms of the engineering constants. 

Substituting equations (2.2a, 2 .2b) into the relation (2.5) and performing inter­
grations with respect to the various powers (0, 1, 2, 3) of the thickness coordinate z, 
leads to the expressions [10]: 

Nx Nx Mx Mx "· r· J Ny ~y My lvfy =t J ~y (1, z2
, z, z3 )dz 

NZ NZ Mz Mz k - l z 
Nxy Nxy Mxy Mxy - hk-1 a xy k 

{Qx Qx Bx ~x} = t l { u.,} ( 1, z2
, z, z3

) dz . 
Qy Qy Sy Sy k = l ayz k 

hk - 1 

We obtained the constitutive equations as following: 

where: 

N 
N 

M 
M 

Q 
Q 

A 

0 

N = (Nx, Ny, Nz, Nxy)t; 

M = (Mx , My, Mz, Mxy)t; 

Q = (Qx, Qy)t ; 

co = (€ox, C:oy , C:oz, /'Oxy)t; 

k = (kx , ky, kz, kxy)t; 

'Y = boxz' /'oyz)t ; 

B 

0 
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co 

0 eo 

k u= De 0 k 
or 

Ds ' 'Y 

eo = (iox , ioy, ioz, "Yoxy)t 
A A A A A t 
k = (kx, ky, kz, kxy) 

i = (kxz' kyz' "Yoxz, '°Yoyz' kxz, kyz)t 

(2.7) 

(2.8) 

(2.9) 



and 

Ci1H1 Ci2H1 Ci3H1 Ci6H1 Ci1H3 Ci2H3 Ci3H3 Ci5H3 
C~2K1 C~3H1 C~6H1 Ci2H3 C~2H3 C~3H3 C~6H3 

n 
C~3 H1 C~6H1 Ci3H3 C~3H3 C~3H3 C~6H3 

A=L C~6H1 Ci5H3 C~6H3 C~6H3 C~6H3 
Ci1Hs Ci2Hs Ci3Hs Ci6Hs k = l 

C~2H5 C~3H5 C~6Hs 
C~3H5 C~6H5 

Symmetric C~6Hs k 

(2.10) 

C~5H1 C~5H1 C~5H2 C~5H2 C~5H3 C~5H3 C~5H4 C~5H4 
C~H1 C~5H2 C~H2 C~5H3 C~4H3 C~5H4 C~4H4 

n 
C~5H3 C~5H3 C~5H4 C~5H4 C~5H5 C~5Hs 

Ds=L C~4H3 C~5H4 C~4H4 C~5H5 C~4Hs 
C~5Hs C~5Hs C~5H6 C~5H6 k = l 

C~4Hs C~5H6 C~4H6 
C~5H1 C~5H1 

Symmetric C~4H1 k 

(2.11) 

The elements of the B matrix can be obtained by replacing H1 by H2 , H3 by H4 

and H5 by H6 in the A matrix. Similarly, the elements of the Db matrix can be 
obtained by replacing H1 by H3 , H3 by H5 and H5 by H7 in the A matrix, where 

Hi = (h1- hL1)/i; i = 1,2,3, ... '7. (2.12) 

3. Finite element formulation 

In the well-established finite element method, the total studied domain is dis­
cretized into "K" elements such that 

K 

7r(d) = 2= 7re(d) (3.1) 
e=l 

where 7r and 7re are the potential energies of the total domain and the element 
respectively; d is the displacement vector inside the element and is defined by: 

(3.2) 
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The potential energy for an element "e" can be expressed in terms of the internal 
strain energy: ue' and the external work done: we' such that 

(3.3) 

In this study, nine-node c0 two-dimensional shape functions Ni (i = 1, 2, ... , 9) 
are adopted for interpolating both the generalized displacements and geometry such 
that: 

9 

d = l:=Nidi 
i = l 

9 
(3.4) 

(x , y) = L Ni(xi , Yi) · 
i=l 

The explicit expressions of Ni are shown in reference [10]. 
Now, refering to the expressions in equation (2.3), the extensional strains (c0,e0), 

the bending curvatures (k,k) and the transverse shear strains ("Y,i) can be written 
in terms of the displacements d using the matrix notations as follows: 

(3.5) 

in which the subscripts E, Band S refer to extension, bending and shear respectively 
and the matrices LE, LB and Ls contain the shape functions and their derivatives. 

Knowing the generalized displacement vector , d , at all points within the element, 
the generalized strain vectors at any point are determined as follows: 

(3.6) 

in which 

BiE = LENi; BE= [[BlE], [B2EJ, .. . ' [BgEl] 
BiB = LBNi ; BB = [[BIB], [B2B], . .. ' [B9El] (3.7) 

Bis= LsNi; Bs = [[B1sJ, [B2sJ, ... , [Bgsl] 
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and 

(3.8) 

Combining the expressions in equation (3.7), the B matrix for the ith node can be 
written as 

(3.9) 

The internal energy of an element is determined by integrating the products 
of in-plane, moment and shear stress resultants with the extensional, bending and 
shear strains, respectively, over the area of an element. This is expressed as 

ue = ~ j [(c~,£~) {~} + (kt,kt) {~} + ('Yt,-yt) {~} ]dA. (3.10) 

A 

Replacing stress-resultants by the product of rigidity matrix and strain in the strain 
energy expression in equation (3.10) , we get 

ue = ~ J [ (c~,e~)A { :~} + (c~,e~)B {~}+(kt, kt)Bt { ~~} 
A 

+ (kt,kt)Db {~} + ('Yt,-yt)Ds {~} ]dA (3.11) 

The internal strain energy expression in terms of the nodal displacements is 
derived by substituting relations in equation (3.6) into equation (3.11) . The result 
is 

ue = ~ J [qtBkABeq + qtBkBBeq + qtBkBBBq + qtBkDBBBq 

A 

+ qtB~D8B8q] dA 

1 
or ue = -qtKeq 

2 

in which Ke is the elememt stiffness matrix and is expressed as 

(3.12) 

(3.13) 

Ke= J (BkABe + BkBBe + BkBBB + BkDBBB + B~DsBs)~A (3.14) 

A 

The integral is evaluated numerically using the 3 x 3 Gauss quadrature rule [11]: 

1 1 3 3 

Kfj = J J BJDBjlJl~dTJ =LL WkW,dJIBiDBj (3.15) 
-1 -1 k=l f=l 
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in which Wk and We are weighting coefficients and I JI is the determinant of the 
jacobian matrix. The subscrips i and j vary from 1 to 9. The Bi and D are given 
by eqns (3.9) and (2.8) respectively and Bj is obtained by replacing i by j. 

For the flexual analysis, the total external work done by the transverse load is 
given- by: 

we = qt J Nf pdA (3.16) 

A 

in which, i varies from 1 to 9; p: uniform distributed load intensity acting over an 
element e in the z direction. 

The integral of eqn (3.16) is also evaluated numerically using the Gauss quadra­
ture rule as follows 

3 3 

Fi = LLWkWelJINfp{O 0 10 0 0 0 0 0 0 0 o}t. (3.17) 
k=l £=1 

Assembling all elements yields the equilibrium equations system as follows: 

KQ=F (3.18) 

in which K is the global stiffness matrix without displacement constraints, Q and F 
are the assembled nodal displacement vector and the assembled nodal force vector, 
respectively. 

After solving the linear algebraic equations (3.18), the generalized strains and 
the generalized resultant vectors can be obtained by (3.6) and (2.8). Once the 
generalized strains are obtained, six strain components and six stress components 
are evaluated from eqn (2.2a)-(2.2b) and (2.4)-(2.5). 

4. Finite element results 

Plates with several layers are solved by the present method and their solutions 
are compared with the other finite element solutions as well as the closed-form 
solutions. The material properties used for each lamina in this study are presented 
in Table 1. 

Each plate is discretized with four nine-noded quadrilateral elements; twelve­
degrees-of-freedom per node. 

Example 1. A simply-supported unsymmetric angle-ply (15° /-15°) square plate 
under uniform transverse load is considered for comparisons of maximum deflection 
and stress-resultants with those obtained by Pandya & Kant [5] and Turvey [7] in 
Table 2 for various ratios of a/h = 5, 10 and 40. Table 2 shows that the present 
method yields exellent results. 

Example 2. A simply-supported symmetric cross-ply (90° /0° /90° /0°) 8 square plate 
under uniform transverse load is considered. The distribution of the stresses at 
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midplate is presented in Figure 1. With the present displacement model, it is not 
possible to satisfy the zero transverse shear stress conditions on the bounding plane 
of the plate. There are also the discontinuities on the interfaces for the interlaminar 
stresses and in-plane lamina stresses. 

Table 1. Material properties for each layer of laminated composite plates 

Conf. Thick. Load E1 E2 E3 G1 G2 G3 v12 V13 V23 

b(mm) q(MPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

Ex.1 (1) 40;20;5 0.0001 280 7 7 4.2 4.2 3.§ 0.25 0.25 0.25 
Ex.2 (2) 5 .1 181 10.3 10.3 7.17 7.17 2.87 0.28 0.28 0.33 

Conf. : Configuration 
Thick. : Thickness 
(1) : [15° / - 15°] 
(2) : [90° /0° /90° /0°] 8 

Table 2. Maximum Deflection and Stress Resultants for a Simply-Supported 
Unsymmetric Angle-ply (15° / -15°) Square Plate under Uniform Transverse Load 
q(x, y) = 0.0001 MPa. 

Source a/h wo(m) Mx(KN) My(KN) -Mxy(KN) 
a a 

(2 ' 2) 
a a 

(2'2) 
a a 

(2'2) (0.0) 

P resent l.61753E-8 0.0017952 0.0002949 0.0002179 
Pandya & Kant [5] 5 l.10021E-8 0.0017328 0.0002504 0.0002843 
Turvey [7] l.00614E-8 0.0016693 0.0002339 

P resent 5.75572E-8 0.0017609 0.0002120 0.0002114 
Pandya & Kant [5] 10 5.24971E-8 0.0018241 0.0002049 0.0002541 
Turvey [7] 5.09414E-8 0.0017842 0.0002004 

Present 2.66322E-6 0.0017827 0.0001781 0.0002744 
Pandya & Kant [5] 40 2.61632E-6 0.0018512 0.0001896 0.0002441 
Turvey [7] 2.60644E-6 0.0018218 0.0001886 
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Source a/h Nx(KN/m) Nxy Qy Qy 
(0, 0) 

a a 
(2,2) 

a 
(o, 2) (~, o) 

Present 0.010144 0.00763018 0.0177515 0.0057565 
Pandya & Kant f :5J 5 0.006904 0.006712 0.016836 0.00576 
TurV'ey '['7] 

Present 0.027529 0.0169409 0.0189025 0.00561243 
Pandya & Kant {5J 10 0.016056 0.01536 0.017208 0.005124 
Turvey f7J 

Present 0.200569 0.0660086 0.0258864 0.00497648 
Pandya & Kant [5] 40 0.067161 0.06408 0.017308 0.004864 
Turvey [7] 
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Figures 1. Distribution of stresses at midplate for a Simply-Supported symmetric 

[90° /0° /90° /0°] 8 Square Plate under Uniform Transverse Load q = 0.1 MPa. 

5. Conclusions 

A simple C 0 isoparametric formulation of a full third-order displacement model 
was developed for bending analysis of thick composite plates. The present shear 
deformable theory does not require the usual shear correction factors generally as­
sociated with the Mindlin-Reissner type of theory. In general, the agreement of the 
present finite element solution is exellent for bending problem of the thin layered 
composite plates when compared with other finite element and the closed-form so­
lution. For the thick (a/h = 5 and 10) simply-supported unsymmetric angle-ply 
(15° / - 15°) square plate, the present finite element solution overpredicts central 
deflections. 

T his publication is completed with financial support from the National Basic 
Research P rogram in Natural Sciences. 
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VE BA.I TOAN UON TAM COMPOSITE LOP DAY 

Truong chuyen vi b~c cao trong phan tu tu giac 9 nut, 12 b~c t\l' do a moi nut 
duqc phat trien cho bai toan uon tam omposite lap day bat ky, ch!u tru trc;mg uon 
ngang. Bien d~ng, n(>i l\fC va ung suat thu duqc trong cac Vl d\l duqc so sanh v&i 
l&i giai giru tlch va m(>t so ket qua PTHH khac. 
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