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Abstract. The article deals with the problem of consistent initial values of the system of 
equations of motion which has the form of the system of differential-algebraic equations. 
Direct treating the equations of mechanical systems with particular properties enables to 
study the system of DAE in a more flexible approach. Algorithms and examples are shown 
in order to illustrate the considered technique. 

1. Introduction 
The system of equations of motion of a mechanical system leads to the problem 

of solving the system of ordinary differential equations (ODE) or the mixed sys­
tem of differential-algebraic equations (DAE). If the set of independent generalised 
coordinates is used, the system of equations of motion has the form of ordinary 
differential equation. In contrast, if the set of dependent generalised coordinates is 
used, the system of equations of motion will have the form of differential-algebraic 
equations. Due to the generality and complexity of these systems of equations nu­
merical integration is usually applied in order to get the solution. Various schemes 
for ordinary differential equations and differential-algebraic equations can be used 
for this purpose. 

Here in this article we will focus our attention on the problem of the initial 
values of the system of differential-algebraic equations, since unlike the ordinary 
differential equations initial conditions for differential-algebraic equations can not be 
chosen arbitrarily: they have to meet the constraints equation and their derivatives. 
This is one major difference between differential-algebraic equations and ordinary 
differential equations. It can be seen as one source of difficulties in numerically 
solving differential-algebraic equations. 

The problem of consistency of initial conditions is a central part for all types 
of differential-algebraic equations which must be addressed as part of the problem 
solution, see e.g. [2), [9), [18), [19), [21] etc. In recent years many mathematical 
researchers were interested in the general problem of consistency of initial condition 
for first order ordinary differential equations which can be described in general by 
equation: 

f(y, y', x) = 0 (1.1) 
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where x is the independent variable, y respectively y' are the vector of dependent 
variables respectively their derivations, f is the vector of functions to be integrated. 
The general definition of consistency and various classification with algorithms could 
be given, see e.g. [1], [8], [15), (20] etc. However due to the generality of the problem 
these algorithms can not be so simple and convenient. Therefore we will release 
these general algorithms and invoke the specialised case of mechanical systems. The 
structure of equations of motion of mechanical system allows us to deal the problem 
with more simple and convenient algorithm. 

For constrained mechanical system the conventional method is using Lagrange 
multipliers . . This approach leads to the system of differential-algebraic equations 
with the presence of "algebraic" quantities in the form of multipliers. The alternative 
approach is the principle of compatibility which is applicable even for more general 
cases of the the systems with nonideal constraints. Both forms of equations of motion 
will be discussed below. Further the extended case for the constrained mechanical 
system with so-called nongeneralised coordinates will be treated. 

2. Initial conditions for various forms of the equations of motion 

2.1. The system of equations of motion with the principle of compatibility 

2.1.1 Basic case 

Firstly, consider the differential-algebraic equations of motion in the form: 

Aq=h+r, 

g(q) = 0, 

DTr=O 
' 

(2.1) 

(2.2) 

(2.3) 

which is constructed according to the principle of compatibility, see [3], [4), [5], [14]. 
This is the case of constrained holonomic scleronomous system with ideal constraints. 
The extension for more general cases will be done in further discussion. Recall that 
the system is described by an n-dimensional vector of generalised coordinates q and 
is constrained by an s-dimensional vector of constraints g according to (3), A is an 
( n x n )-dimensional matrix of inertia, h is the vector, absorbing Coriolis, centrifugal 
and generalised forces and r is vector of reaction forces and D is an ( n x ( n - s) )­
dimensional matrix, which is derived from the condition of ideality of the constraints. 
The matrices A, D and hare functions of generalised coordinate q and generalised 
velocity q. 

When speaking about initial conditions of the system (2.1) , (2.2) and (2.3) the 
following considerations should be clear. From the point of view of motion of me­
chanical system, the system has ( n - s) degrees of freedom. In order to avoid the 
physically meaningless cases (2( n - s)) initial conditions should be available: ( n - s) 
conditions for positions and ( n - s) conditions for velocities. They are independent 
and, of course, not contradict to each other. In the other hand, from the point of 
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view of numerical integration, the numerical scheme requires the initial values of all 
quantities, i.e. 

qo = q(O), Qo = q(O), <io = q(O) and ro = r(O). (2.4) 

In other words we should have n initial conditions for the components of vector 
of generalised coordinates q, n initial conditions for the components of the vector 
of generalised velocities q, n initial conditions for the components of the vector of 
generalised accelerations q, n initial conditions for the components of the vector of 
generalised reaction forces r. These values should be consistent: they should meet 
the constraint equations and their derivatives. 

Therefore for assuring the consistency of initial conditions, the constraint equa­
tion (2.2) is differentiated twice. One gets: 

G(q)q = 0 (2.5) 

and 

Gq + g(O) = 0, (2.6) 

where G is an (s x n)-dimensional Jacobian matrix of the vector g with respect to 
the vector q and g(o) is an s-dimensional vector. 

The definition for the consistency of initial conditions of the system (2.1), (2.2) 
and (2.3) is as follows: 

Definition D.1. The initial values (2.4) of the system (2.1), (2.2) and (2.3) are 
consistent if they satisfy following: 

A( qo, Qo, to)<io = h( qo , Qo, to) + ro, 
g(qo) = 0, 

G(qo)Qo = 0, 

G( qo)<io + g(o) = 0, 

DT(qo,Qo)ro = 0. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

The system (2.7), (2.8), (2.9) , (2.10) and (2.11) in this definition does not com­
pletely determine the initial values. Logically, some values of positions and velocities 
may be chosen, corresponding to the number of degrees of freedom of the system. 
In the case of consideration this number, as discussed above, is (n - s). The rest of 
positions, velocities and other quantities should be determined, in order to satisfy 
the Definition D.l. 

A sequential initialisation process can be provided in the 3 phases. First the 
position problem must be solved, then the velocity analysis must be performed and 
subsequently an acceleration analysis yields all accelerations together with reaction 
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fo~ces . The algorithm for defining consistent initial conditions for the system (2.1), 
(2.2) and (2.3) can be written as follows: 

Algorithm A.1 

1. Set np = n - s. 

2. Set nv = np. 
3. Choose np independent initial conditions for positions. 
4. Choose nv independent initial conditions for velocities. 
5. Determine the rest of initial conditions for positions from the equation (2.8). 
6. Determine the rest of initial conditions for velocities from the equation (2.9) . 
7. Determine the rest of initial conditions for acceleration and reaction forces 

from the equation (2.7), (2.10) and (2.11). • 
In this algorithm the number np and nv are defined explicitly according to our 

problem (2.1) , (2.2) and (2.3). They are corresponding to (n-s) degrees of freedom 
of the system under consideration and in the extension of the algorithm for more 
general cases, as shown below, these values will be. modified for specific cases. np 

values of positions and nv values of velocities respectively may be chosen at the 
time instant t = t 0 , or in other words at the beginning of numerical integration 
these values should be supplied explicitly. Clearly, these initial values of coordinates 
should be independent and enable defining the rest of all quantities. For checking 
the independency of coordinates the partioning approach with SVD or LU etc. could 
be applied e.g. [10], [18], [21] etc. 

In the step 5 of above algorithm the complete set of initial values for position is 
defined. The matrix equation (2.8) presents the system of s, in general nonlinear, 
equations for s unknowns, i.e. the rest of initial values of generalised coordinates. 
Similarly, in the step 6 we should solve the system of s equations for s unknowns. 
For the system described in (2.1) , (2.2) and (2.3) , the velocity analysis leads to the 
problem of solving the linear system of algebraic equations. 

In the last step, the complete set of initial values is determined. In this step we 
have the system of (2n) algebraic equations for (2n) unknowns. This system has the 
following form: 

A I -I h 
--- -1- ---

[~~] G I 0 - -go (2.12) 
--- -1- ---

0 I DT 0 

2.1.2. Extension for more general cases 

Now consider the case of the system which is restricted by the constraint equation 
in the more general form: 

g(q,q) = 0. . (2.13) 

173 



Assume that the vector function g includes both types of constraints: holonomic 
and nonholonomic. It means that we have Sp equations in which only generalised co­
ordinates Qi , i = 1, 2, . .. , n, appear, and Sv equation, in which generalised velocities 
Qi, i = 1, 2, . .. , n, appear. Clearly, the total number of constraints is s: 

Sp+ Sv = S. 

Formally we can separate (2.13) into two groups: 

gv(q, q) = 0, 

gp(q) = 0, 

(2.14) 

(2.15) 

(2.16) 

where 9 v and 9p are vectors of dimension of ( Sv x n) and (Sp x n) respectively. The 
Jacobian matrices are assumed to be well posed i.e. Jacobian GP of the vector gP 
with respect to q and Jacobian Gv of the vector gv with respect to q, are both full 
rank. 

When some nonholonomic constraint is imposed on the system, the generalised 
velocities are restricted, but not the generalised coordinates. It means that on the 
position level one more coordinate could be chosen freely, or it should be supplied 
at the beginning of integration process. Therefore the number of coordinates on the 
position level is: 

np = n - sP' (2.17) 

The number of initial values nv for velocities is the same ass. Hence, the Algorithm 
A. l is easily extended for the case under consideration. It is only necessary to check 
at the beginning the number of sp: how many constraint equations include explicitly 
generalised velocities. 

For acceleration analysis the same techniques as in the previous case can be 
applied. For this purpose the constraint equation (2.13) is transformed into the 
form: 

Gq + g(O) = 0. (2.18) 

Remind that this equation looks like the equation (2.6) , but the matrix G is con­
structed in different way. Since the vector function g includes both types of equa­
tions (in the first one the generalised velocities appear explicitly and in the second 
ohe only generalised coordinates appear) , the vector functions gi, i = 1, 2, ... , s, 
should be derivated once or two times in order to get generalised accelerations in 
the equations. 

The algorithm for determining the consistent initial values for this case is as 
follows: 

Algorithm A.2 

1. l.a Determine the number Sp, Sv· 
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1. b Set np = n - Sp· 

2. Set nv = n - s. 

· 3. Choose np initial conditions for positions. 
4. Choose nv initial conditions for velocities. 
5. Determine the rest of initial conditions for positions from the equation (2.16). 
6. Determine the rest of initial conditions for velocities from the equation (2.13) . 
7. Determine the initial values for accelerations and reaction forces from the 

equations (2.7), (2.11) and (2.18). • 
Note that in this case the velocity analysis in step 5 does not perform the linear 

system of algebraic equations but it leads to the problem of solving the system of 
nonlinear equations due to the general form of equations (2.13). In the acceleration 
analysis with the modified structure of the matrix G we get again the problem of 
solving the linear system of algebraic equations in the form of (2.12) . 

It is possible to extend the algorithm for more general case when the constraint 
equations may include some restriction on acceleration level. The constraint equa­
tions have the form: 

g(q, q, q) = 0. (2.19) 

Again with regard to the highest derivatives of the vector q in each equation we can 
separate the equations (2.19) into three groups: 

ga(q, q, q) = 0, 

gv(q, q) = 0, 

gp(q) = 0. 

(2.20) 

(2.21) 

(2.22) 

The dimensions of vectors ga, gv and gP correspond to the numbers sa, Sv and Sp 

of the constraints in which accelerations, velocities or only generalised coordinates 
appear: 

S = Sa + Sv + Sp. (2.23) 

Obviously we assume again that these constraints are well posed, i.e. the Jaco­
bian matrices of corresponding vectors with respect to q, q or q are full rank. 

The similar consideration, as in the previous case, can be applied. Each of 
the constraint equations on the acceleration level (2.20) presents two integration 
constants. It means that we can choose arbitrarily two initial conditions: one for 
the position level and one for the velocity level. Hence the number for initial values 
of position is: 

(2.24) 

The number for initial values for velocities is: 

(2.25) 
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Clearly the position analysis can be provided with the matrix equation (2.22). 
For velocity and acceleration analysis the constraint equations (2.21), (2.22) should 
be converted to the derivated forms. From (2.21) one gets: 

Gvq + gi0) = 0, (2.26) 

where Gv is an (sv x n)-dimensional Jacobian matrix of the vector gv with respect 
to q and gi0) is an Sv-dimensional vector. 

Derivating the equation (2.22) once and two times yields: 

Gpq=O (2.27) 

and 

G q" + g(O) = 0 
p v ' (2.28) 

where Gp is an (sp x n)-dimensional Jacobian matrix of the vector gP with respect 
to q and gi0) is an Sp-dimensional vector. 

The consequent steps of algorithm for this case can be described as following. 

Algorithm A.3 

1. l.a From the constraint equations determine the corresponding numbers sp, 

Sv, Sa . 

1. b Set np = n - Sp· 

2. Set nv = n - Sp - Sv. 

3. Choose np initial conditions for positions. 
4. Choose nv initial conditions for velocities. 
5. Determine the rest of initial conditions for positions from the equation (2.22), 

i.e. 

gp(Qo) = 0. (2.29) 

6. Determine the rest of initial conditions for velocities from the equation (2.21) 
and (2 .27), i.e. 

gv( Qo, <io) = 0, 

Gp<io = 0. 

(2.30) 

(2.31) 

7. Determine the initial values for accelerations and reaction forces from the 
equations (2.7), (2.11), (2.20), (2.26) and (2.28), i.e. 

A( Qo, Qo, to)Cio = h( Qo, Qo, to) + ro , 
DTr0 = 0, 

ga(Qo, <io, Cio) = 0, 

G .. (0) - 0 
vQo + gv - ' 

Gp<io + g~o) = 0. • 
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Note that in this algorithm the calculation provided in the steps 5, 6, 7 for 
positions, velocities and accelerations analysis presents in general the problem of 
solving the system of nonlinear equations. In the step 5 the system consists of Sp 

equations for the rest of Sp values of generalised coordinates. In the step 6 the system 
_has (sp + sv) equations for (sp + sv) values of velocities, yet unknown. Finally in the 
step 7, the system iri total presents (2n) equations of 2n components of q0 and r 0 . 

Obviously the Algorithms A.l and A.2 can be included in the more general 
Algorithm A.3. In these particular cases we have Sa = 0 and Sv = 0 respectively. 
However due to the specific form of the obtained equations the technique for solution 
of the linear system of algebraic equations could be applied instead of the system of 
nonlinear equations. 

So far we discuss only scleronomous system, i.e. time variable, namely t, does not 
appear explicitly in the constraint equations. The extension of above algorithms for 
the rheonomous system can be provided easily. The appearance of the time variable 
in the equations of constraints does not affect the flowchart of consecutive steps 
in the algorithms. Only we should take into account this time variable t when 
derivating the constraint equations. Hence some forms of equations may be changed 
due to the partial derivative of the functions with respect to time. Namely, the 
equation (2.27) now has the form: 

Gpi1+g~ = 0 , (2.37) 

where g~ is a vector of partial derivative of gP with respect to the time variable t. 
Consequently the form of (2.31) in Algorithm A.3 is changed in similar way. The 
rest of the algorithm is unchanged formally. 

In order to reduce the number of equation to be integrated, sometimes the re­
duced form of equation of motion is used, see [14) . In this case the reaction forces 
are excluded from the system of equation. The above algorithms are still valid with 
corresponding modification in the acceleration analysis (e.g. step 7), since there is 
no need of initial values for reaction forces . 

For the system with nonideal constraints we can also apply this approach. In­
stead of the condition of ideality (2.33) in Algorithm A.3, we dispose other (n - s) 
conditions: 

f(r0 ) = 0, 

Df ro = 0. 

(2.38) 

(2.39) 

Recall here that f is a vector function, supplied by specific requirements of prob­
lem and D 1 is a matrix which could be generated by the technique similar to the 
technique for the matrix D in (2.3) . The rest of the Algorithm A.3 is valid for the 
general case with nonideal constraints. 
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2.2. The system of equations of motion with Lagrange multipliers 

For ideal constraints the conventional method is using Lagrange multipliers. We 
can apply easily above approach for this form of equations of motion. Instead of 
reaction forces we will have the Lagrange multipliers .A= [.Ai], j = 1, 2, . .. , s, where 
s is the number of constraints. The system of differential-algebraic equations in this 
case with holonomic scleronomous constraints is as follows: 

Aq = h+ GT.A , 

g(q) = 0. 

(2.40) 

(2.41) 

The meaning of quantities is the same as in the system of (2.1), (2.2) and (2.3) . 
The definition in the Section 2.1 and Algorithm A.l can be easily extended for 

the system (2.40) and (2.41) . The only difference is the fact that the dimension of 
the vector .A is only s . Hence we can state the definition for consistent initial values 
of q0 , q0 , q0 , .A for the system ( 2. 40) and ( 2. 41) if the following holds 

A(qo , Qo , to)Ci = h(qo, Qo , to)+ GT.A , 

g(qo) = 0, 

G(qo)<lo = 0, 

G( Qo)Cio + g (O) = 0. 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

and the Algorithm A.1 is applied for this system. Clearly, the system for defining 
Ao and q0 in the step 7 is (2.42) and (2.45). The rest of the algorithm remains 
unchanged . 

Similarly, for the extended cases: the system with nonholonomic constraints 
(2.13) or constraints with acceleration (2.19) , we can use the Algorithms A.2 and 
A.3 with minor modification in the acceleration analysis in the step 7. The extension 
for the rheonomous system as discussed in the previous section is valid. It is worth 
reminding that for the system with ideal constraints both approaches: the principle 
of compatibility and using Lagrange multipliers, are applicable but for nonideal 
constraint the only way is the principle of compatibility. 

2.3. The mechanical system with nongeneralised coordinates 

In engineering application there are cases when in the system of equations of mo­
tion appear so-called nongeneralised coordinates. The term "nongeneralised" is due 
the fact that no inertia forces are associated with them. Hence the nongeneralised 
coordinates do not increase the number of differential equations of motion. Exam­
ple of such mechanical system can be found in the contact problem of multibody 
dynamics or in the control problem. 

Detail discussion about deriving equation of motion for such system is out of 
scope of this article, see e.g. [6] but recall here that we can use the principle 
of compatibility. The reaction forces of the constraints that correspond to these 
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coordinates are zero. Consider the holonomic system with n generalised coordinates 
described by the vector q and m nongeneralised coordinates described by a vector 

p . 
If the number of constraints s is equal to the number of nongeneralised coordi-

nates m, i.e s = m, the system of equations of motion is in the form of differertial­
algebraic equation as follows: 

A(q, p)q = h(q, p, t), 

g(q, p , t) = 0. 

(2.46) 

(2.47) 

Keep in mind that A is of (n x n)-dimension, q and hare of (n x 1)-dimension, 
pis of m-dimension and g is of s-dimension (in this case m-dimension). The system 
of consideration has n degrees of freedom, hence the initial values for q and q are 
known before integrating process. The initial values for nongeneralised coordinates 
can be defined in the similar way according to the Algorithm A.1, but in this case 
the evaluation of "algebraic" quantity Po can be performed directly if p appear only 
in the equation (2.47), separately from the evaluation of Cio· 

For the case when the number of constraints s is greater than the number of 
nongeneralised generates m, i.e. s > m, the system of constraints is split into 
two groups. The first group is used to construct differential equation according to 
the principle of compatibility and the reaction forces, corresponding to the second 
group of constraints are zero. The equation of motion in the form of the system of 
differential-algebraic equations is obtained and the basic Algorithm A.1 for evalu­
ation of consistent initial conditions can be applied even for this case. It is worth 
emphasising that this technique with the principle of compatibility is also valid for 
nonholonomic system, see e.g.[6] . 

3. Illustrated examples 

For illustration we will consider two examples. The first one is simple case of 
spatial four bar mechanism with dependent set of coordinates and the second one is 
the case of the system with nonholonomic constraints and nongeneralised coordinate. 

3.1. Spatial four bar mechanism 

Consider a spatial four-bar mechanism shown in figure 1. In order to illustrate 
the constraint condition, a two-degree-of-freedom mechanical system in the form of 
the double pendulum is used. Each of the uniform bar 1 and 2 is 2 units long with 
its centroid located at the center. The constraint is presented by a body with unit 
length and neglible mass that connects the end of body 2 and point (0,2,0). Two 
generalised coordinates are chosen: q1 is the orientation of the bar 1 in respect to 
x-axis and q2 is the orientation of bar 2 in respect to z-axis, see [10]. 
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From the distance condition of point [O, 2, O] and end point of bar 2 we can write 
the constraint condition: 

8 - 8cosq1 sinq2 - 4sinq1 = 0. 

This is the case of holonomic constraint (2.2) with 

n = 2, s = 1 and np = nv = 1. 

z 

Fig. 1. Spatial four-bar mechanism 

With Lagrange multipliers one gets the equation of motions as follows: 

4m1 ( 4sin
2 

q2) . . -
3
- + m2 1 + 

3 
m2 cos Q2 8 sm q1 sm q2 - 4 cos q1 

m2 COSQ2 

8 sin q1 sin q2 - 4 cos q1 

4m2 

3 
-8 cos Q1 cos Q2 

-8 cos Q1 cos Q2 

0 

. ( ·2 8<11<12 cos Q2) m2smq2 q2 - 3 

[;] 

(3.1) 

(3.2) 

. 4m2<11 cos Q2 sin Q2 I . (3.3) 
-m2gsmq2 + 

3 
-(8 cos q1 sin Q2 + 4 sin q1)<i? - 16 sin Q1 cos Q2<ii<i2 - 8 cos Q1 sin Q2<i2 

Since the DOF of the system is 1, the initial condition is e.g.: 

Q1(0) = q~, <i1(0) = q~. (3.4) 

In order to get the solution of the system the set of initial conditions should be 
determined. 

Following the Algorithm Al and the discussion in the Section 2.2 the position 
analysis is provided: q2(0) is determined from the equation (3.1). This performs the 
solving nonlinear equation. The velocity q2(0) is determined from the equation: 

(8sinq1sinq2 - 4cosq1)q1 - 8cosq1 cosq2q2 = 0. (3.5) 
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Finally ii1(0), ii2(0) and .X(O) are determined from the system, consisting of equation 
(3.3) and following equation: 

( 8 sin Q1 sin Q2 - 4 cos q1) ii1 - 8 cos Q1 cos Q2ii2 = 

= -[(8cosq1sinq2+4sinq1)q? + 16sinq1cosq2q1q2 +8cosq1 sinq2q2]. (3.6) 

Obviously, the solution of problem (3.1), (3.5) or (3.6) can be provided only 
with numerical methods for nonlinear system of equation and for linear system of 
algebraic equations. With the complete set of the values of q1 , q2, <ii, q2, iii. ii2, .X 
for the time instance t = 0, the numerical integration can be started. 

It is worth noting that it is possible to define independent generalised coordinate 
that leads to nonlinear differential equation of motion and the problem of initial 
conditions disappears. But in this case the form of equation is strongly nonlinear 
and very complex. This is the advantage of the concept with dependent coordinates, 
however, some problems such as consistency of initial condition should be solved. 

4.2. Vehicle model in manoeuvre 

Consider the motion of a simple model of an automobile in a horizontal plane, 
Figure 2, see [6), [7), and [12). The body of the. car is considered as a rigid body and 
its configuration is determined by the coordinates x, y and <p, i.e. the coordinates of 
the mass center and the angle between the body's lengthwise axe and x-axis of the 
fixed frame. The controlling component also is represented by a body, the position 
of which is determined by angle (), i.e. the angle of its lengthwise axe with respect 
to the car body. The car body has a mass m0 , the moment of inertia about the 
vertical axis passing through the mass center is 10 . The controlling component has 
a moment of inertia I about the vertical axis passing through its center but its mass 
is small in comparison with the mass of the car and, therefore, it could be neglected. 

Fig. 2. Planar vehicle model in manoeuvre 

Now, consider the motion of the car with the assumption that the planes of front 
wheels are parallel with the lengthwise axe of the controlling component, which 
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is affected by controlling moment Md. When changing direction, the system has 
following nonholonomic constraints: 

- x sin <p + y cos <p + bcp = 0, 

- ±sin( <p + 0) + iJ cos( <p + 0) +a cos O<P = 0, 

(3.7) 

(3.8) 

where b and a are distances from the mass center to the front and rear axe respec­
tively. The car body has a total length L, L = a + b. 

Assume that the car is controlled to follow the trajectory of the mass center, 
which has the form: 

x 2 + (y - R) 2 
- R2 = 0. (3.9) 

Using the principle of compatibility in the reduction form we can write the 
differential equation of motion in the form, see [6]: 

m0 (Lcos0coscp- bsinOsincp)x + m0 (Lcos0sincp + bsinOcoscp)y 

+ (Io+ I) sin Orp +I sin OB= [F0 - k1 (±2 + y2)]L cos(} - k2 sin (}V;2 , 

I<{)+ J() - Md= 0. 

(3.10) 

(3.11) 

This is the case of nonholonomic system due to the presence of constraints (3.7) 
and (3.8) . The nongeneralised coordinate in our case is the controlling moment Md. 
Hence the system of equation of motion that consists of five equations (3.7), (3.8), 
(3.9), (3.10) and (3.11) , is a mixed system of differential-algebraic equation for five 
unknowns x, y, <p, (} and Md. For this constrained mechanical system the following 
holds: 

n = 4, S = 3, Sp= 1, Sv = 2, np = 3, nv = 1, m = 1. (3.12) 

The initial conditions for this problem can be chosen e.g. as follows: 

x(O) = Xo, cp(O) = <po, (}(O) = Oo, x(O) = ±o. (3.13) 

Keep in mind the set of initial conditions can not be chosen arbitrary due to the 
full rank condition of Jacobian matrices for defining independent set of coordinates. 
For example, we can not choose the set including both coordinates x and y in this 
case. 

The rest of values of consistent initial conditions is determined from the posi­
tion, velocity and acceleration analysis. Firstly the value of y(O) is evaluated from 
equation (3.9) . The values of y(O), <P(O}, 0(0) are determined from the system of 
equations that includes (3.7), (3.8) and the following equation: 

xx + (y - R)y = 0. (3.14) 
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The accelerations x(O), ii(O), 4:)(0), e(o) and the algebraic q_uantity Md\O) is evalua~ed 
from the system of five equations that consists of (3.10), (3.11) and three followmg 
equations: 

x2 + xx + i/ + (y - R)y = 0, 
- sin<px - (±cos<p + i;sin<p)<j;cos<py + bcp = 0, 

- sin( <p + O)x - [±cos( <p + 0) + iJ sin( <p + O)]<P 

- [±cos( <p + 0) + iJ sin( <p + 0) +a sin O<j;]O 
+ cos( 'P + (}) + a cos ei:p = 0. 

(3.15) 
(3.16) 

(3.17) 

Again with the complete set of values of x, y, <p , B, ±, y, rp, 0, x, y, cp, jj and Md 
for the time instance t = 0, the numerical integration can be started. 

In this example we can see that with the appearance of nongeneralised quanti­
ties, e.g. controlling forces etc., the problem of consistency of initial condition is 
inevitable. The procedure of numerical integration required even the initial values 
of these quantities but they are in general unknown at the beginning. The example 
illustrates a generally applicable numerical method for searching these values for 
numerical integration. 

5. Conclusion 

In this article we are interested in numerical determining consistent initial ('.ondi­
tions for the system of equations of motion of the mechanical system in the form of 
differential algebraic equations. Two problems should be emphasized when dealing 
with this part icular system. 

The first problem is the appearance of the "algebraic" quantities in this sys­
tem. They may be Lagrange's multipliers (when using Langrange equations with 
multipliers) or generalised reaction forces (when using principle of compatibility) 
or nongeneralised coordinates. The initial values of these quantities are unknowns 
before the integration process and should be determined. Normally, as shown in 
this article, they can be evaluated together with generalised accelerations in the 
acceleration analysis after position and velocity analysis. 

The second problem is the type of constraint equations. According to these equa­
tions the appropriate set of initial values of independent coordinates and velocities 
can be chosen. The rest of consistent initial values is determined by performing 
position an velocity analysis. 

Our approach with considered algorithms can be easily converted to the computer 
modules and included in the packages for analysis and simulation of constrained 
mechanical system. Clearly this required some other numerical modules, such as 
solution of the system of nonlinear equation or coordinates partioning etc. 

This publication is completed with financial support from the National Basic 
Research Program in Natural Sciences. 
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xAc DINH BANG PHUONG PHAP s6 cAc DIEu KIEN DAU TUONG THicH . ' , " "' . ~ 
CUA CAC H~ ca HQC CHJU LIEN KET 

Bai baa trlnh bay phmrng an xac d!nh cac dieu ki~n dau tuang thich cho cac h~ 
phuang trlnh chuyen d9ng c6 di;ing vi phan di;ii so. Vi~c xet tr\l'C tiep cac tinh chat 
cua cac phuang trlnh chuyen d{mg CUa cac h~ ca h9C, cho phep tiep C~ cac phuang 
trlnh vi phan d~i so m9t each thu~n lqi han. Cac thu~t giro va vi dlf duqc dua ra 
de minh h9a cho phuang phap duqc trlnh bay. 
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