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SYNCHRONIZATION IN THE SECOND 
APPROXIMATION 

NGUYEN VAN DINH · 

Institute of Mechanics 

It is well-known the phenomenon of synchronization (frequency entrainment) in 
self-excited systems subjected to external or parametric excitations; A lot of mono­
graphs [2, 3, 4] has analyzed several important systems for which the synchroniza­
tion effect occurs and can be determined in the first approximation. However, there 
exist also certain systems possessing a stable-excited oscillation obtained in the first 
approximation, which may be synchronized only in the second approximation. This 
article deals with some systems of the mentioned type; the asymptotic method [1] 
is applied for this purpose. 

1. System under consideration and the solution in the second approx­
imation 

Let us consider the system governed by the differential equation of the form: 

x + x = c:f(x, ±, nwt) = c:{ h(l - x 2)± + g(x, nwt) }, (1.1) 

where x is an oscillatory variable; overdots denote differentiation with respect to time 
t; 1 is the own frequency; c; > 0 is a small formal parameter; h > 0 is the intensity of 
the self-excitation h(l-x2)±; g(x, nwt) represents external or parametric excitations 
of frequency nw (g will be given below for each case examined). 

Assuming that w is very close to the own frequency (pratically, ·the system is in 
exact resonance) we rewrite (1.1) as: 

x + w2x = c:f(x, ±, nwt) + c: 2~x, 

where c:2 ~ = w2 - 1 is the detuning parameter of order c:2 . 

According to the asymptotic method, following expansions are used: 

(1.2) 

x = acos'ljJ + c:u1 (a,O,'l/J) + c:2u2 (a,O,'l/J) + ... , 'ljJ =wt+ 0, (1.3) 

a= c:A1(a, 0) + c:2 A2 (a, 0) + .. . , (1.4) 
. . 2 
0 = c:B1(a,0) + c; B2(a, 0) + .. . , (1.5) 

where a, 0 are full amplitude and dephase of the first harmonic; Ai, Bi (i = 1, 2, . . . ) 
are functions of a, O; and ui (i = 1, 2, ... ) are functions of a, 0, 'l/J, 27r-periodic 

145 



with respect to 'If; and do not contain first harmonics cos 'If;, sin 'If;. With regard to 
(1.4), (1.5) , substituting (1.3) into (1.2), expanding f(x, x, nwt) in Taylor serie of E, 

equating the terms of like powers of c yield. 
In the first approximation: 

A . 2 (a2
u1 ) ( . ) -2w 1 sm 'If; - 2waB1 cos 'If; + w o'lj;

2 
+ u1 = f a cos ¢ 1 - wa sm ¢1 n'lj; - nB . 

(1.6) 

In the second approximation 

. 2(a2
u2 ) - 2wA2sm 'If; - 2waB2cos'lj;1 + w B¢2 + u2 = 

8A1 ~~ . 
= -A-l Ba cos'lj;-2wA10'1j;Ba +udx(acos'lf,11 -wasm'lj;1n'lj;-nB) 

+ (Ai cos 'If;+ w ~:) f:e(acos 'I/Ji - wasin ¢ in¢ - nB) + <5acos 'If;+ .. . , (1.7) 

where fx, fx are partial derivatives with respect to x , x and non-written terms 
contain B1 as a factor. A1, B1, u1 and A2, B2, u2 are obtained by equating the 
terms of like harmonics in both sides of (1.6) , (1.7). If A1 does not contain (} and 
B1 _ 0, the amplitude and the dephase of synchronized oscillations (if it exists) are 
determined by the equations: 

cA1 (a) + c2 A2 (a , B) = 0, 

c2 B2(a, B) = 0. 

(1.8) 

(1.9) 

2. Synchronization under external excitation in subharmonic reso­
nance of order 1/3 

First, consider the case of an external excitation of intensity e > 0 and frequency 
3w, that is 

g(x, nwt) = e cos 3wt. 

In the first approximation we have 

. 2 (82
u1 ) - 2wAi sm 'If; - 2waB1 cos'lj; + w B¢2 + ui = 

( 
a

2
) hwa

3 

= -hwa 1 - 4 sin 'If; + -
4

- sin 3¢ + ecos(3¢ - 3B), 

ha ( a
2

) 
A1 = 2 1 - "4 , B1 = 0, 

hwa2 e 
u1 = --- sin 3¢ - - cos(3¢ - 3B) . 

32w2 8w2 
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(2.1) 

(2.2) 

(2.3) 

(2.4) 



Hence, the expansions (1.4) , (1.5) are: 

a = cha (i - a2) (} = 0. 
2 4 ' 

(2.5) 

Evidently, in the first approximation, there exists only a stationary self-excited 
oscillation with amplitude a* = 2 and arbitrary (indetermined) dephase O; this 

osciilation is stable (in amplitude) since &A~~a.) = -h < 0, it is perturbed by 

small oscillations (2.5); the latter are due to the'external excitation and also to the 
non-linear character of the self-excitation. The synchronization cannot be revealed 
by the calculation in the first approximation. 

In the second approximation (with regard that B1 = 0) 

. 2 (82u2 &A1 , 82u1 
- 2wA2 sm 'l/J - 2~aB2 cos'l/J + w 81f;2 + U2 =-Ai &a cos'l/J - 2wA1 o'lf;oa 

+ u1 • hwa2 sin2'!/J + ( A1 cos'l/J + w ~~ )h(l - a
2 cos2 'l/J) + D.acos'lf;, (2.6) 

hea2 

A2 = 
64

w 2 cos 30, (2.7) 

-1 { hwea
2 

h
2
w

2
a

5 
&A ( 3a

2
)} B2 = - 2 sin3B + 

28 2 + (w2 - l)a-A1-
8 

1 + hA1 1- -
4 

. 
2wa 32w 1 w a 

(2.8) 

By a8 , Bs we denote the amplitude and dephase of synchronized oscillations; they 
are determined (as it has been noted above) by the equations (1.8) , (1.9). 

By letting 

and expanding A1(a. + ca1 ) in Taylor serie of€, the equation (1.8) becomes 

( 
2 &A1(aa) 2 

cA1 a*)+ c a1 &a + c A2(a*, Bs) = 0. 

With regard that A1(a.) = A1(2) = 0, from (2.10), one obtains: 

- - A ( () ) I a A 1 (a*) - e cos 30 s . 
a1 - 2 a.' s &a - 16w2 

The dephase ()5 is given by the equation (1.9), that is: 

or 
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(2.9) 

(2.10) 

(2.11) 

(2.12) 



with the condition that 

-he :::; 2w[h2 + 8(w2 - 1)] :::; he. 

2h 
If w2 = 1 (exact resonance), sin30s = -- with the condition that e ~ 2h, a 1 = 

e 

egh
2 

egh2 ±- 1 - -
2 

, as = 2 ± - 1 - -
2 

. Note that there exist two amplitudes: the 
16 e 16 e . 

larger corresponds to cos 3Bs > 0 i.e. a1 > 0, the smaller corresponds to cos 3Bs < 0 
i.e. a 1 < 0. 

3. Synchronization under linear parametric excitation in fundamental 
resonance 

The second case to be examined is that of a linear parametric excitation of 
intensity 2p > 0 and frequency w i.e. 

g( x, nwt) = 2px cos wt. (3.1) 

In the first approximation: 

[)2 2 
- 2wA 1 sin 'lj; - 2waBi cos 'lj; + w2 ( 

0
;

2

1 + u 1) = -hwa ( 1 - ~ ) sin 'lj; 

hwa3 

+ -
4

- sin 3'1j; +pa cos(}+ pa cos(2'1j; - B) , (3.2) 

ha ( a2) Ai = 2 1 - 4 , B1 = 0, (3.3) 

hwa3 . 1 1 
u1 = -

32 2 sm3'1j; + 2 pacos0- - 2pacos(2'1/J- B). 
. w w ~ 

(3.4) 

In the second approximation 

(
82u . ) 

- 2wA2 sin 'If; - 2waB2 cos 'If; + w2 o'lf;: + U2 

8A1 8
2
u1 { 2 . ( } 

= -Ai oa cos 'If; - 2wA1 o'lj;oa + U1 hwa sm 2'!/J + 2pcos 'lj; - 0) 

+ (A1 cos'lj; +w~~ )h(l - a 2 cos2 '1j;) + 8acos'lj;, (3.5) 

A _ p2asin 2B 
2 - 4w3 ' (3.6) 

-1 {p
2
a 2 p2a h2w2a5 

2 8A1 · ( 3a2
} 

B2=- -cos 0--+ +(w -l)a-A1-+hA1 1--
2wa w2 ~2 128w2 8a 4 ' 

cos2 ()s = ~ - h2w2 - w2(w2 - 1) 
3 8p2 p2 ' ai = 
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p2 sin 2(}8 

4hw3 

(3.7) 

= 2 _ p
2 

sin 20 s • (3 8) as . . n • 



If 2 - 1 - 2 - p2 sin 20 s 2 1 h 2 2 3 2 
w - , as -

4
h , cos Bs = '3 - Sp2 on condition that p ~ Bh . 

4. Synchronization under quadratic parametric excitation in subhar-
. . f d 1 

momc resonance o or er 2 
For the third example, consider the case 

g(x, m;t) = 2px2 cos 2wt, (4.1) 

where 2p > 0 and 2w are intensity and frequency of a quadratic parametric excitation 
1 

in subharmonic resonance of order 2 · 
In the first approximation 

f)2 2 
- 2wAi sin 'l/; - 2waBi cos 'l/; + w2 (a:; + Ui) = -hwa ( 1 - ~ ) sin 'l/; 

hw~ 1 1 
+ -- sin 3'1/; + -pa2 cos 20 + pa2 cos(2'1/; - 20) + -pa2 cos( 41/J - 20), ( 4.2) 

4 2 2 

Ai = ~a ( 1 - : ) , Bi = 0, ( 4.3) 

hwa3 1 pa2 1 
ui = ---sin3'1j,1 +-2pa2cos20- - 2 cos(2'1/J- 20) - --2(2a2cos(4'1/J- 20). 

32w2 2w 3w · 30w 
(4.4) 

In the second approximation 

2 (82
u2 ) 8Ai 82

ui 
- 2wA2 sin 'ljJ - 2waB2 cos 'ljJ + w f)'lj;2 + U2 = -Ai aa cos 'ljJ - 2wAi 8'1j;8a 

+ u2{ hwa2 sin 21/J + 4pacos 'ljJ cos(2'1/J - 20)} 

+(Ai cos'lj; + w ~~ )h(l - A2 cos2 '1/J) + b.acos'l/;, (4.5) 

-1 
A = -p2a3 sin4 

(} 
2 8w3 ' 

(4 .6) 

- -1 {p2a3 2 - 21p2a3 h2w2a5 
B2 - 2wa 2w2 cos 28 30w2 + 128w2 

2 8Ai ( 3a
2
)} + (w - l)a - A1 oa + hA1 1 - 4 , (4.7) 

p2sin40s p2sin4Bs 2 7 h2w2 w2(w2 -1) 
ai = - hw3 ' as = 2 - hw3 cos 20s = 5 - 16p2 - 2p2 . 

If w2 = 1, as = 2 - P
2 
si~ 48

s cos2 2(}s = ~ - h
2 

2 with the condition that 
5 16p 

5h2 5h2 

-<p2<-· 
112 - - 32 
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5. Synchronization under the interaction between quadratic non­

linearity and excitation in subharmonic resonance of order ~ 
The last example is devoted to the case in which g(x, nwt) consists of the 

quadratic nonlinearity -f3x2 ({3 > 0 and the external excitation e cos 2wt 

g(x, nwt) = -f3x2 + e cos 2wt. (5.1) 

If f3 = 0, the self-excited oscillation cannot be synchronized; if f3 > 0, under certain 
condition, the synchronization may occur in the second approximation. 

In the first approximation 

~2 2 
. 2 ( U U1 ) ( a . ) - 2wA1 sm'lf;- 2waB1 cos'lf; + w o'l/J2 + u1 = -hwa 1- 4sm'lf; 

hwa3 

+ -
4

- sin 3'1/J - f3a2 cos2 'If;+ e cos(2'1/J - 20), (5.2) 

ha ( a
2

) A1 = 2 1 - 4' , B1 = 0, (5.3) 

hwa3 . j3a2 f3a2 e 
u1 = ---sm3'1/J- - +-cos2'1/J- -cos(2'1f;-20). 

32w2 2w2 6w2 3w2 
(5.4) 

In the second approximation: 

2 . 2 
. 2(0U2 ) 8A1 OU1 

- 2wA2 sm 'If; - 2waB2 cos'lf; + w f)'ljJ2 + U2 = -A1 oa cos'lf; - 2wA1 o'lf;oa 

+ u1 { hwa2 sin2'1/J - 2f3acos'l/J} + (A1 cos'lf; + w ~~ )h(l - a2 cos2 'If;) 

+ ~acos'l/J , (5.5) 

A f3ae . 2LI 
2 =--sin u 

6w3 ' 
(5.6) 

1 { f3ae f3
2
a

3 
h

2
w

2
a

5 
2 8A1 ( 3a

2
)} B2 =-- -cos20+--+ +(w -l)a-A1-+hA1 1-- , 

2wa 2w2 3w2 128w2 aa 4 
(5.7) 

f3e . f3e . 4(3 3h2w2 3w2 (w2 - 1) 
a1 = -

3
hw3 sm 20s, as = 2 -

3
hw3 sm 20s, cos 20s = ---;- - Bf3e -

f3e . -4(3 3h2 
.. 

If w2 = 1, as = 2 - -h sm 20s, cos 20s = -- - -
13 

on cond1t10n that 8f3e ;::: 
3 e 8 e 

32(32 + 3h2
. 

6. Stability conditions 

The stability study is based on the equations Qfvariation 
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( r )• ( 8A1 28A2) 28A2 ua · = c:-+c: - 6a+c: -·60 
8a 8a 80 ' 

(JO)•= 28B2 8 28B2 80 c: 8a a+ c: 80 ' 

from which the characteristic equation can be established 

2 { 8A1 2(8A2 8B2)} { 3 8A18B2 4 } >. - € 8a + € oa + 80 >. + € 8a 80 + € . . . ~ o. 

The two sufficient stability conditions are: 

With regard that as= a*+ c:a1 the condition (6.2) can be written as 

8A1(a*) 2 { 82A1(a*) 8A2(a*) 8B2(a*,Os)} 
€ 8a + € al 8a2 . + oa + 80 < o, 

or, in pratice (by neglecting the terms of order c:2) 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

. ( a2 
). 8A1 (a*) 

Smee A1 = ha 1 - 4 and a* = 2 we have 
8

a = -h < 0 so that the first 

condition of stability is always satisfied. 
By neglecting the terms of order c:4 , the second stability condition can be sim­

plified as 

8A1 (a*) . 8B2(a*, Os) = -h 8B2(a*, Os) 0 aa ao ao > 

8B2(a*, Os) O 
ao < . 

(6.7) 

i.e. 

As an illustration let us form the stability conditions of the system examined in 

§2 (the case of external excitation in subharmonic resonance of order ~). We have 

-3hea cos 30 
64w2 

8B2(a*, Os) -3he cos 30s -3ha1 - -
80 32w2 2w2 
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The stability condition ( 6. 7) is satisfied with a1 > 0 and does not satisfied 
with a1 < 0. This means that synchronized oscillations corresponding to a larger 
amplitude (as= 2+ca1 > 2) are stable; those corresponding to a smaller amplitude 
(as = 2 - ca1 < 2) are unstable. 

Conclusion 

The examples examined above show that there exist self-excited systems for 
which the synchronization occurs only in the second approximation. The asymptotic 
method can successfully be used to study these systems; the stability conditions can 
easily be established. 

This publication is completed with the financial support from The Council for 
Natural Science of Vietnam. 
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HI~N TUONG DONG BQ a XAP xi THU HAI 

Xet hi~n tuqng dong b9 & m9t so h~ tl! chan ch!u kich d(:>ng cu&ng buc ho~c 
thong so. D~c diem cac h~ nay Ia & xap xi thu nhat co che d9 tl! chan dirng on d!nh 
va che d9 nay duqc dong b9 hoa & xap xi thu hai. 
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