
Vietnam Journal of Mechanics, NCST of Vietnam Vol. 25, 2003, No3 (129 - 136) 

CON·NECTED OSCILLATIONS IN 
A NONLINEARLY COUPLED SYSTEM 
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Vietnam National University Hanoi 

A single-mass plane system subjected_ to symmetric restoring forces can strongly 
oscillate in the direction which is free from the external excitation. The raising 
oscillation is called the connected one. This phenomenon exists only in nonlinear 
systems under certain resonance conditions and was first investigated by Kononenko 
v. 0 . [1] . 

In this paper the conditions, under which the connected oscillations occur, will 
be considered by means of the method of small parameter. The amplitude of the 
connected oscillation will be determined by the asymptotic method of nonlinear 
dynamics. 

l. Statement of problem. Equations of motion 

Let us consider a single-mass plane sys­
tem shown in Fig. 1, where the springs 
are located symmetrically and the exter­
nal force f sin( wt +a) is directed along 
the y-axis. Due to the symmetry of the 
springs, in the Taylor's expansion of the 
potential energy U of these springs the 
odd terms relative to the coordinates x 
and y are absent: 

x 

Fig. 1. An oscillating system 

1 2 1 2 1 4 1 4 1 22 
U = 2u20x + 2uo2Y + 4u40X + 4uo4Y + 2u22X Y + .. . , 

where Uij are constants, u20 and u02 are linear spring coefficients, x and y are dis­
placements from the equilibrium position. 

Using the Lagrange's equations and taking into consideration the friction forces 
and external excitation one can write the equations of motion of the mass mas [2]: 

mx + U20X + H1± + U40X3 + U22XY2 = 0, 

my+ uo2Y + H2iJ + uo4Y3 + u22YX2 
= f sin( wt+ a), 

(1.1) 
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where we limit ourselves by nonlinear terms lower than four relative to x and y; 

i.e. we consider only small oscillations of the mass m, and Hi are positive viscous 
clamping coefficients, I and w are the intensity and the frequency of the external 
force, a is its initial phase. 

Assuming that the nonlinear terms and the friction force H1x in (1.1) are small 
and introducing a small positive parameter c, which will be set to unity after calcu­
lations, we can write equations (1.1) in the form 

x +>.ix+ c(h1± + /1X
3 + axy2

) = 0, 

ii+ >.~y + h2iJ + c(/2y3 + ayx2) =lo sin( wt+ a), 

where 

).2 _ U20 
i-­

m' 

U40 
c/1 = m ' 

,2 Uo2 
A1=­m' 

Uo4 
c/2 = m ' 

Here /i and a can be positive or negative. 

chi= H1 
m ' 

ca= U22 
m' 

Obviously, equation (1.2) have partial solution 

x* = 0, y* =I= 0, 

h2 = H2 
m' 

lo= L. 
m 

(1.2) 

(1.3) 

(1.4) 

which corresponds to the motion of the mass m only along the y-direction. This is 
natural for linear system, because then two equations of (1.2) are separate 

x + >.~x + ch1x = 0, 

ii+ >.~y + h2iJ =lo sin( wt+ a). 

The oscillation of the coordinate y does not influence on the coordinate x and 
this coordinate will be at rest. The situation is changed for the nonlinear system 
described by equation (1.2). Under certain resonance conditions the oscillation of 
x-coordinate arises and sometimes becomes more strong than that of y-coordinate. 
In the next paragraphs we will clear up these conditions. 

It is noted that in the case x = 0, they-coordinate satisfies the Duffing's equation 

ii+ A~Y + h2iJ + c/2Y3 =lo sin( wt+ a). (1.5) 

The initial phase a can be chosen so that the solution of (1.5) has a simple form 

y = Rsinwt, (1.6) 

where R and a are determined by equations 

lo 
R= 3 ' 

h~w2 + ( >.~ - w2 + 4c12R2) 2 

h2w 
a= arctg 3 

A2 
- w2 + -E"'2R2 

2 4 I 

(1 .7) 
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· 2: Conditions for arising the oscillation of the x-coordinate. Paramet­
ric resonance 

In order to study the stability of the solution (1.4): 

x* = 0, y* = Rsinwt (2.1) 

of equations (1.2), we consider their arbitrary solutions x, y which are deviated from 
(2.1) and are presented in the form: 

x = u, y = Rsinwt + v, (2.2) 

where u and v are new and small variables. If all u and v tend· to zero when t ~ oo 
. ' 

then the solution (2.1) of equations (1.2) is asymptotically stable. If at least one of 
u and v grows infinitely when t ~ oo, then the solution (2.1) is unstable. So, the 
problem on the stability of the solution (2.1) leads to the problem on the stability 
of the zero solution u = v = 0 of the corresponding equations for u and v. These 
equations can be obtained by substituting (2.2) into (1.2). We have 

u + ,\~u + c[h1u + (aR2 sin2 wt)u] + c2 
· •• = 0, 

(2.3) 
v + ,\~v + h2v + (3c12R2 sin2 wt)v + c2 

• • • = 0, 

where the non-written terms are at least second degree in (u, v), so that all linear 
terms are explicitly shown. 

Assuming that there is a resonance relationship between ,\1 and w: 

,\~ = w2 + c6.., (2.4) 

where 6.. is a detuning parameter and there is no relation of type n 1,\1 + n2,\2 = 0 
between ,\1 and A.2 , where n 1 and n 2 are integers. When c = 0, and for small 

1 . 
h 2 : h2 < 2,\2 , equations (2.3) have characteristic roots ±iw, - 2h2 ± ~J4A.~ - h~, 
the first two of which ±iw are critical and other two are non-critical. The problem 
on the stability of the solution u = v = 0 of the equations (2.3) with periodic 
coefficients will be solved by considering the real parts of the characteristic indexes 
[3). It is easy to prove that these indexes for non-critical characteristic roots have 
negative real parts. Hence, the stability of zero solution of (2.3) depends only on 
the sign of the real parts of characteristic exponents of corresponding critical roots 
±iw. 

We use the following change of variables 

u = U eut, v = V eut, (2.5) 

where U and V are some periodic functions of t with period 
2

7r and CJ is a charac­
w 

teristic exponent 

(2.6) 
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The unknown quantities U, V, (]'1 and (]'2 will be determined in the further calcula­
tions. By substituting expressions (2.5) and (2.6) into (2.3) and dividing to eut we 
get. 

U + w2U + c{ !:::..U + 2(]'/.J + h/J + (aR2 sin2 wt)U} + c2 · · · = 0, 

V + ..\~V + h2 V + c{ 2(]'1 V + (312R2 sin2 wt)V} + c2 · · · = 0. 

27r 
The periodic solution with the period - of the last equations will be found in 

w 
the series 

U = Uo +cU1 +c2U2 + . .. , 

V =Vo+ cVi + c21/2 + .. . . 

By comparing coefficients of equal powers of c, it is easy to obtain the following 
equations for U0 and U1 : 

{

Uo +w2Uo = 0, 

U1 + w2U1 = -{ LiUo + (h1 + 2(]'1)Uo + (aR2 sin2 wt)U0 }, 

Vo-0, ... 

The periodic solution with period 
2

7r for U0 is 
w 

U0 = N cos wt+ M sin wt, 

where N and M are constants, which will be determined from the conditions of 
periodicity of the function U1. We have 

U1 + w2U1 = -{ (!:::.. + ~ R 2 )N + (h1 + 2(]'1)wM} cos wt 

+ { (h1 + 2(]'1)wN - (Li+ ~aR2)M} sin wt+ .. . 

So, the conditions of periodicity of U1 are 

a 
(!:::.. + 4R2)N + (h1 + 2(]'1)wM = 0, 

3 
(h1 + 2(}1 )wN - (!:::.. + 4aR2 )M = 0. 

From here it follows the equation for (]'1 : 

4W2(]'i + 4w2h1(]'1 + 8 = 0, 

a 3 
S = h~w2 + (!:::.. + 4R 2

) (!:::.. + 4aR2) . 
(2.7) 
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The stability condition for the solution u = v = 0 is Rea1 < 0, or the same 

s > 0. (2.8) 

If this condition is satisfied, the zero solution of equations (2.3) and therefore the 
solution (2.1) of equations (1.2) will be asymptotically stable and there will be no 
oscillation of mass m in x-direction. We will consider the case, when the condition 
(2.8) is not satisfied. The oscillation of the mass min x-direction may be occurred. 
The determination of the amplitude of this oscillation and the study of its stability 
will be given in the next paragraph. 

3. Oscillations of the mass m in x-direction 

Coming back to the equations (1.2) with resonance condition (2.4) and using the 
transformation of variables 

{

x = acos(wt + cp), 

x = - aw sin (wt + cp), 

y = Rsinwt, 

(3.1) 

where a and cp are new variables which are substituted for x and x. By substituting 
(3.1) in (1.2) and solving for a and cp we get 

where 'I/; = wt + cp, 

wa = cF sin 'I/;, 

wacp = cF cos 'I/;, 
(3.2) 

(3.3) 

Equations (3.2) belong to the standard form, for which the averaging principle is 
applied [4] . The averaged equations for (3.2) are 

wa = -~a(4wh1 + aR2 sin 2cp), 

c [ · a J wacp = Ba 4 ( .6. + 2 R2
) + 311 a2 

- aR2 cos 2cp . 
(3.4) 

There exist two stationary solutions a = a0 = const, cp = cp0 = canst of these 
equations: 

1) a0 = 0, cp0 is arbitrary, which corresponds to the state at rest of the x­
coordinate 

2) a= a0 =/= 0, cp = cp0 which corresponds to the oscillation of the x-coordinate. 
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The non-trivial solutions a= a0 =/=- 0, c.p = <p0 of (3.4) satisfy the equations 

4wh1 + a.R2 sin 2c.p0 = 0, 
a. 

4(~ + 2R2
) + 311a6 - a.R2 cos 2c.p0 = 0. 

By eliminating the phase <p
0 

we obtain a relationship for the amplitude ao: 

W(a6, w2
) = 0, 

where 

(3.5) 

W(a6,w2) = [4(~ + ~R2 ) + 311a6J2+16h~w2 
- a.2R4

. (3.6) 

The phase <p
0 

is determined by the formula 

{ 
-4h1w } 

<p0 = arctg a. . 
4(~ + 2R2

) + 311a6 
(3.7) 

To study the stability of the solution a0 , <p0 of (3.4) we let in which 

a = ao + ~ , <p = 'Po + T/· 

The variations ~ and T/ satisfy the following equations of the first approximation 

d~ c: 2 
w-d = --a.a0R cos 2<p0 • TJ, 

t . 4 
dTJ 3 2 c: 2 . 

wao-d = -c:11a0~ + -a.aoR sm 2<p0 • TJ . 
t 4 4 

The characteristic equation for this system can be presented in the form 

c:2 aw 
w2p2 + c:w2h1P + 32a6 8a6 = 0. 

Hence, the stability condition for stationary solution a0 , <p0 is 

aw 
aa2 > 0. 

0 

(3.8) 

(3.9) 

By the rule stated in [3], it is easy to identify the stable branches of the resonance 
curves, basing on the expressions (3.6) and (3.9). 

It is noted that, the expression (3.6) can be written in the form 

W(a6,w2) = 91ia~ + 2411(~ + ~R2)a~ + 165, (3.10) 
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here S is of the form ( 2. 7) . On the segment I of w2-a.Xis ( a0 = 0) of the plane ( a6, w2) 

the function W(O, w2 ) is negative, the expression S is negative too. Remember 
that as it is shown at the end of the paragraph §2, this means that the segment I 
corresponds to the instability of the state at rest of the x-coordinate. Hence, where 
this state is unstable, the parametric resonance of the x-coordinate occurs. 

Introducing the notations 

'Y1 
'Y = ),2 ' 

1 

we can solve equation (3.5) relative to a6: 

For 'Y > 0, we set 

For 'Y < 0, we set 

We have 

and for the phase <p0 : 

3 2 -2 
--c:{ao =Ao. 

4 

A~= 0 2 - 1-/3R2 ± J~{J2R4 
- h20 2 

A~= 1- 0 2 + {JR2 ± J~{32R4 - h20 2, 

hD 
'Po= -arctgl - 02 + {32R2 + A6' 

hw 
<p = -arctg · 

o 1 - 02 + {32 R2 - A~ 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

The dependence on n of the amplitude a0 of oscillation of the x-coordinate is given 
in Fig. 2 for {3 = -0.1 , R = 1.5 and for various values of parameters h: h = 0, 
h = 0.100 and h = 0.105. 
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Fig. 2. Resonance curves: 1. h = 0, 2. h = 0.100, 3. h = 0.105 
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DAO DQNG QUAN LIEN 
TRONG MQT H~ PHI TUYEN NO! KET DOI XUNG 

Bai baa de c~p den m9t van de eel dien cua dao d9ng quan lien trong mo hlnh 
dao d9ng hoan toan doi xung nh~m lam sang to nhfrng dieu ki~n, theo d6 dao d9ng 
CUa V~t the Se xay ra theo phuang khong CO ngo<;ii h.rc tac d9ng trl!C tiep (xem dieu 
ki~n S < 0) va xac d!nh bien d(> dao d(>ng cua v~t the theo phuang nay (Bieu thuc 
(3.15), (3.16)). Phuong phap tham so be va phuang phap ti~m c~n cua ly thuyet 
dao d9ng phi tuyen da duqc SU dwig de giro quyet bai toan d~t ra. 
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