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ON A VARIANT OF THE ASYMPTOTIC PROCEDURE 
(FOR WEAKLY NONLINEAR AUTONOMOUS SYSTEMS) 

NGUYEN VAN DINH 
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As well-known, usually, in the asymptotic (Krylov-Bogoliubov-Mitropolski) 
method, the full amplitude (a) of the first harmonic is used as variable in asymptotic 
expansions [1]. In the first approximation, the equations of stationary oscillations 
are rather simple, however, in higher approximation, these equations often become 
very complicated, especially when initial conditions are imposed. 

In this article, a variant of the asymptotic procedure is presented and applied 
to determine stationary oscillations in weakly nonlinear autonomous system with 
given initial conditions. Instead of the full amplitude, the approximate amplitude 
of order c0 is used and by this, stationary oscillations can easily and successively be 
determined in each step of approximation, although various types of initial condi­
tions may be imposed. It is interesting to note that the results obtained are identical 
with those given by the Poincare method [2] . 

1. Systems under consideration - The usual asymptotic procedure 

Consider weakly nonlinear autonomous oscillating systems described by following 
differential equations: 

x + x = cf(x), 

x + x = cf(x, x), 
(1.1) 

(1.2) 

where x is oscillatory variable; overdots denote differentiation with respect to time t; 
1 is own frequency; f (x) and f (x, x )-for simplicity-are polynomials of their variables; 
c is a small formal parameter. The equation (1.1) represents weakly nonlinear 
conservative systems, the equation (1.2) represents weakly nonlinear self-excited 
systems. The problem of interest is to determine stationary oscillations (free or 
self-excited oscillations) satisfying initial conditions: 

for (1.1) : 

for (1.2) : 

x(O) = Xo, x(O) = 0, 

x(O) = 0. 

(1.3) 

. (1.4) 

For the sake of comparison, the usual procedure of the asymptotic method is briefly 
recalled: 
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First, following asymptotic expansions are used 

x = a cos 7./J + c;u1 (a, 7./J) + c;2u2 (a, 7./J) + . .. , 

a= c:A1(a) + c:2 A2(a) + ... , 
~= l+c;B1(a)+c;2B2(a)+ ... , 

(1.5) 

(1.6) 

(1.7) 

where a is the full amplitude of the first harmonic; 7./J is phase angle; Ai, Bi ( i = 

1, 2, . . . ) are functions of a; and ui (i = 1, 2, ... ) are functions of a and 7.f;, periodic 
with respect to 7./J with period 27r. -

Since a is the full amplitude of the first harmonic, Ui ( i = 1, 2, .. . ) do not contain 
any first harmonic. 

Then, substituting (1.5) into (1.1) or (1.2), using (1.6), (1.7), equating the terms 
of like powers of c; yield 

. 8
2
u1 (1) ( ) - 2A1 sm 'ljJ - 2aB1 cos 'ljJ + B7.f;2 + u1 = f a, 'ljJ , (1.8) 

. 82u2 (2)( ) . 8B1 . 
- 2A2 sm 7./J - 2aB2 cos 7./J + 87.f;2 + Uz = f a, 7./J = 2A1B1 sm 7./J + aB1 aa sm 7./J 

8A1 2 82u1 82u1 -
-A1 aa cos7.f;+aB1cos'ljJ-2A1a7.f;Ba -2B1 87./J2 +f(a,7./J), (1.9) 

where 

for (1.1): f(1)(a,7.f;) = f(acos'ljJ), f(a,7.f;) = u1 · fx(acos'ljJ), (1.10) 

for (1.2): f( 1)(q,'lj;) = f(acos'ljJ, -asin'ljJ) 

f(a, 7.f;) = u1(a, 7.f;) · fx(a cos 7./J, -a sin 7.f;) 

+ (A1 cos7.f;-aB1sin7.f;+ ~;)!x(acos7.f; , -asin7./J), (1.11) 

fx, fx are partial derivatives of the function f with respect to x, x. 
Finally, expanding J(l) (a, 7./J), J(2) (a, 7./J) in Fourier series, equating the terms of 

like harmonics yield 

Ni 

jCi)(a, 7.f;) = fai)(a) + L [S~i)(a) sinn7./J + C~i)(a) cosn7./J]; Ni> 0, integer (1.12) 
n=l 

(1.13) 

(1.14) 

(1.15) 

78 



where s~i) (a) = 0 for the cases ( 1.1). 
Let us determine stationary oscillation in the second approximation. 
For (1.1) : Since A1 (a) = 0, A2 (a) = 0, without initial condition, the amplitude 

a and the initial phase () are arbitrary and we have 

(1.16) 

If the initial condition (1.3) are imposed, a and() are determined by the equations: 

N1 l 
x(O) =a cos()+ .s{JJ1)(a) - L n 2 _ 1 C~1 ) (a) cosn()} = x0 , 

n=2 

&x(a,())=-asin()+.s~ n C(1)(a)sinn()=O 
8'lj; L,.,; n 2 - 1 n · 

n=2 

Stationary oscillation is stable with respect to a (not asymptotically) 
For (1.2): The amplitude a is determined by the equation 

(1.17) 

cA1(a) + .s2 A2(a) = 0, (1.18) 

and, with regard that 

x =a cos 'ljJ + c{ Jci1)(a) - f
2 

n2 ~ 1 
[ S~(a) sin n'lj; + C~(a) cos n'l/J ]} , (1.19) 

the initial phase () is determined by the equation 

&x~~()) =-asine-I: 
2
n [S~1 ) (a)cosne-C~1) (a)sinne] =0. (1.20) 

n=2 n - 1 
The condition for asymptot ic stability is 

8A1 28A2 O ( ) 
c 8a + c 8a < . 1.21 

2. Stationary oscillation from a variant of the asymptotic procedure 

In this section, the problem of interest is treated by a variant of the asymptotic 
procedure. 

First , a is considered now as the approximate (not full) a:r;riplitude of order c0 

of the first harmonic. The asymptotic expansions of x, ±, 'ljJ retain their forms 
(1.5), (1.6) , (1.7) but the functions u i (i = 1, 2, . .. ) may contain the first harmonics 
ai cos 'ljJ +bi sin 'ljJ of order ci where ai, bi are constants to be chosen. The presence of 
ai , bi modifies all the calculations in the second and higher approximations; however, 
as "compansion", a suitable choice of ai, bi allows us to consider the initial phase as 
zero, that is 'lf;(O) = 0. 
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Then, stationary oscillation is determined - not at the end but - successively in 
each step of approximation; this can be done by using two following requirements: 

1 - The amplitude a (of stationary oscillation) is constant i.e. a = O in each step 
of approximation; this means that, for every i, we have 

(2.1) 
2 - Also in each step of approximation, the initial conditions must by satisfied. 
For the initial condition x(O) = x0 , the amplitude of stationary oscillation should 

be taken 

a= a*= x0 (2.2) 

and the functions ui should be vanished at the initial moment, that is 

ui(a*, 'lj>(O)) = ui(a*, 0) = 0. (2.3) 
For the initial condition ±(0) = 0, the partial derivative of ui with respect to 'ljJ at 
initial moment should be vanished, that is 

aui~~' 0) = 0. (2.4) 

In detail , for (1.1), in the first approximation, x = acos'lj> and since A1(a) = 0, 
we have a = a* = x0, the initial conditions x(O) = x0, x(O) = 0 are satisfied. The 
expression of u1 (a, 'ljJ) is of the form: 

Again, to satisfy the initial conditions (1.3), a1 and b1 should be taken 

Ni 

- - (1)( ) "°"" 1 cC1)( )· 
a1 - ah - - fo a* + L......t n2 - 1 n a. ' 

n =2 

(2.6) 

Because of the presence of ah in u1 (a, 'ljJ), the expansion of JC2) (a, 'ljJ) is modified 

N2 

1c2)(a, 'lj>) = Yb2
)(a) + z= c~2)(a) cosn'lj>, 

n=l 

where fb2
\ a)' c~2\ a) differ from fd2

) (a)' C~2) (a). 
In the second approximation 

1 -(2) 
B2(a) = -

2
a C1 (a), 
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-(2) N2 1 -(2) 
where a2 = a2* = -! 0 (a*)+ f2 n2 - 1 en (a*), b2 = b2* = 0. (2.10) 

For (1.2): In the first approximation, the amplitude a* of stationary oscillation 
is determined by the equation 

.sA1(a) = o i.e. spl(a) = o. (2.11) 
The expansion of u1 (a, 'l/J) is: 

To satisfy the initial condition (1.4), b1 should be chosen such that 

8u1(a*, 0) _ 0 . b _ b _ ~ n S(I)( ) 

a·'· - i.e. 1 - . h - L,,, 2 - 1 n a* . 
'f/ n=2 n 

(2.13) 

As to a1, it can only be determined in the second approximation. 
expansion of / (2) (a, 7jJ) can be written as 

Indeed, the 

/(2l(a, 7/J) = [1~2\a) + aif0 (a)] (2.14) 
N2 

+ L { [8~2\a) + aiSn(a)] sinn'l/J + [C~2)(a) + a1Cn(a)] cosn'l/J} 
n=l 

and 
-1 (2) J -1 ['7V(2) 

A2(a) = -[81 (a)+ aiS1(a) , B2 = -
2 

LC1 (a)+ ai C1 (a)]. 
2 a . 

Imposing on A2(a) the requirement A2(a*) = 0, we obtain 

-(2) 

a1 =ah= S~i(~:)) on condition that S1(a*) #- 0. 

Thus, in the second approximation, we have 

Ni 

x =a cos 'l/J + .s{ 1~ 1)(a) - I: [ s~1l(a) sin n'l/J + c~1 l(a) cos n'l/JJ 
n=2 

+ ah cos 'l/J + bh sin 'l/J}, 

2 c (1) c2 {-(2) } a= .sA1(a) + .s A2(a) = -2S1 (a) - 2 S1 (a)+ ahS1(a) , 

. 2 .s (1)( ) c2 {C(2)( ) ( )} 7jJ = 1 + .sB1(a) + .s B2(a) = 1 -
2
a C1 a -

2
a 1 a + ahC1 a . 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

The amplitude a* of stationary oscillation is given by (2.11) and the phase angle 
of stationary oscillation is 'l/J(t) = {1 + .sB1(a*) + .s2B2(a*)}t. Note that in (2.17), 

81 



(2.18), (2.19), a= a(t) is the varying amplitude therefore, from (2 .18), the condition 
for asymptotically stability can easily be established 

( 
8A1 28A2) 0 c~+c~ <. 
ua ua * 

(2.20) 

The expression of A2 in (2.20) differs from that corresponding in (1.21). On the 
other hand, the left hand side of (2.20) is calculated with a= a* determined in the 
first approximation while the left hand side of (1.21) is calculated with a determined 
in the second approximation. Thus, (2.20)-being not identical with (1.21) - is more 
simple and that is just an advantage of the variant of the asymptotic method. 

3. Comparison and example 

The modified procedure already presented can be justified by comparing the 
results obtained in §2 with those given by the Poincare method [2]. Indeed, for the 
case (1.2), introducing the new timer 

T =Wt 

the system (1.1), (1.2) are rewritten as 

w2x" + x = cf(x, wx'), 

x'(O) = 0, 

(3.1) 

(3.2) 

(3 .3) 

where w is the unknown frequency; primes denote differentiation with respect tor. 
Then both two unknowns x and w are expanded in powers of c that is 

2 x = Xo + cX1 + c X2 + ... ' 

w = 1 + cw1 + c2w2 + ... . 

As to the initial condition (1.4), it is replaced by 

x~(O) = 0, 

x~ ( 0) = 0, ( i = 1, 2, ... ) . 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Substituting (3.4), (3.5) into (3.2), expanding the right hand side in Taylor's series 
of c, equating the terms of like powers of c in the two sides yield 
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The general solution of the differential equation (3.8) satisfying the initial condition 
(3.6) is 

Xo = acOST. (3.11) 

Substituting (3 .11) into (3.9), (3.10) gives 

.x~ +Xi - 2aw1 COST= f(acosT1 - asinT1), (3.12) 

x~ + X2 - 2aw2 COST= 2aw1 COST+ aw~ COST+ xifx(acOST1 - a sin Ti) 

+ (-aw1 sin T + x~)fx(a cos T1 - a sin T), (3.13) 

Except the absence of the terms containing A1, A2 as factors, the difference between 
the equations (3.12), (3.13) and their corresponding ones (1.8), (1.9) is of formal 
character and consists only in the difference between the notations (T = wt, wi, 
Xi and 'ljJ = wt, Bi , ui)· However, for steady state, A 1(a*) = A 2 (a*) = O; so, the 
equations (3.12), (3.13) lead to the same results as those in §2 i.e. the stationary 
oscillation obtained in §2 is identical with that determined by the Poincare method. 

As an illustration, consider the system 

x + x = c-h(l - x 2)x, h > o. 

In the first approximation we have: 

fJ2u 
- 2A1 sin 'ljJ - 2aB1 cos'lj; + B'ljJ; + u1 = h(l - a2 cos2 'lj;)(-asin 'l/J) 

( 
a

2
) ha

3 

= -ha 1 - 4 sin 'ljJ + 4 sin 3'!/J, 

1 a2 

A 1(a) = 2ha(l - 4 ), B1 = 0, a*= 2, 

u1 (a, 'ljJ) = - ~~
3 

sin 3'!/J + a1 cos 'ljJ + b1 sin 'ljJ, 

8u1 3ha3 · . 3ha~ 3h 
- = - -- cos 3'1/J - a1 sm 'ljJ + b1 cos 'ljJ b1 = -- = - · 
8'lj; 32 ' 32 4 

In the second approximation, we have: 

. 82u2 8A1 82u1 
- 2A2 sm 'ljJ - 2aB2 cos'lj; + 8'lj;2 + U2 =-Ai aa cos'lj; - 2A18'lj;8a 

+ u1ha2 sin 2'!/J + ( A1 cos'lj; + ~~) h(l - a2 cos2 'lj;) 

= ha1 (5a2 - 1) sin 'ljJ + { h2a5 + 3h2 (1 - a2) - Ai 8A1 + Aih(l - 3a2)} cos 'ljJ 
4 128 4 4 aa 4 

+higher harmonics, 
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A2 = - h;1 ( 5:2 - 1) ' 
1 { h2

a
5 

3h
2 

3h2 ( a2) BA1 3a2 
B2 =-2a 128 +4+4 l-4 -Ai Ba +Aih(l-4)}. 

We choose a 1 = 0 so that A2(a) - 0. Thus, in the second approximation the 
expression of x is 

3h h 
x = 2 cos 7./J + c4 sin 7./J - €4" sin 37./J 

and the condition of stability is 

( 
BA1 ) ha: . 
€- = -€- = -Eh < Q Le. h > 0. 

Ba * 4 

Conclusion 

The variant of the asymptotic procedure above presented can be used for study­
ing weakly nonlinear systems with given initial conditions. The determination as 
well as the stability study of stationary oscillation is rather simple, especially for . 
higher approximation. The results obtained are identical with those given by the 
Poincare method. 

This publication is completed with the financial support from The Council for 
Natural Science of Vietnam. · 
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MQT BIEN THE CUA TRINH TV TI?M CAN 
(H? 6T6N6M PHI TUYEN YEU) 

H~ 6t6n6m phi tuyen yeu duqc khao sat nh& m9t bien the cua trlnh t\l' ti~m 
c~n. Thay cho bien d9 day du, bien d9 & xap xi c0 cua ac m6nic thu nhat duqc SU 
d\mg trong khai trien ti~m c~n . Vi~c xac C4nh cilng nhu vi~c khao sat on C4nh caa· 
che d9 dirng c6 phan dan gian han, nhat fa & xap xi b~c cao. Cac ket qua thu duqc 
trimg v&i cac ket qua tuang ung trong phuang phap Poincare. 
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