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ABSTRACT. In the Part 1 of this paper [l], some numerical methods for solving the 
1-D Saint-Venant equations of general flow regime have been described. This Part of the 
paper presents the results of verification by various test problems, covering all of three 
flow regimes: sub-, trans-, and super-critical. The results show that the mixed approach 
(between pointwise and upwind) for source terms is better than the pointwise one and any 
mathematical transformation of source terms must be careful, since that can lead to non­
physical solutions. The Roe's approximation with the mixed technique for the source terms 
is used for a preliminary evaluation of the Son La - Hoa Binh dambreak problem. 

1. Verification of the numerical methods by Test-Cases 

To evaluate the general flow simulation capacity and the advantages of every 
numerical method presented in the Part 1 of this paper some test cases newly devel­
oped by European Hydraulic Laboratories [2, 3] will be used. The results of testing 
will be shown in figures (1-14, 16-21). 

In these figures the following notations are used: 
- Z9t, Q9t , V9t - analytical water level , discharge , velocity 
- Zu , Qu , Vtt - numerical water level, discharge, velocity 
- zb - bed level 
- H - Water depth 

1.1. Schemes with the pointwise source term integral 

1.1.1. Steady fiow through a bump 
In this case all 4 schemes are used to calculate the steady flow through a bump 

in a rectangular channel with a constant width [2]. Depending on the boundary and 
the initial conditions the flow may be sub-critical, super-critical , trans-critical or at 
rest. The comparison between numerical and analytical solutions is made. 

Channel has a length of 25 m, a width of 1 m. The bed slope is as follows : 

Zh(x) = {0.2 - 0.05(x - 10)
2

, 

0, 
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8m < x < 12m 

x ~ 8m or x ~ 12m 



The grid has the space increment ~x = 0.025 m . The calculated cases are 
(1) Water at rest: Q = Om3 Is, zhf = 2m, 
(2) Transcritical flow wit hout shock Q = 1.53m3 / s, Zhe = 0.66m, 
(3) Transcritical flow with shock Q = 0.18m2 Is, zhe = 0.33m, 
( 4) Sub-critical flow: Q = 4.42m3 / s, Zhe = 2m. 

Table 1. Comparison of the convergence time 

Methods Convergence time ( s) Average (s) 

Water Transcritical Transcri ti cal Sub-
at flow without flow with critical 

rest shock shock 

Lax-Friedrichs 46.98 45 .37 94.19 83.26 67.75 
Roe's 
Approximation 181.03 45 .33 127.25 95.75 112.34 
Hybrid 1440.00 1440.00 1440.00 111.05 1107.80 
Nessyahu-
Tedmor . 204.55 45.37 128.54 97.76 119.06 

According to the results shown in figures (1-4) , the accuracy of methods can be 
presented in the following order: Roe's approximation, Hybrid, Nessyahu-Tedmor, 
Lax-Friedrichs. At the smooth region of solutions these methods give nearly the 
same accuracy, but near discontinuities or nonsmooth part of solutions the Roe's 
approximation and the Hybrid method are better than Nessyahu-Tedmor and Lax­
Friedrichs methods. 
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Fig . 1. Water at rest. (a) The Lax-Friedrichs and (b) the Roe's approximation methods 
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Fig. 2. Transcritical flow without shock. 

(a) The Lax-Friedrichs and (b) the Roe's approximation methods 
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Fig. 3. Transcritical flow with shock. 
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1.1. 2. The wet bed dambreak problem 
In this case, 4 schemes are applied to calculate the unsteady flow in a flat rectan­

gular channel for the simultaneously dambreak situation. The friction is neglected. 
A front wave is formulated by the gravitational force . The analytical solution is 
the Stocker solution that consists of a shock wave, propagated downstream and a 
rarefaction wave, propagated upstream [4]. 

The channel has a length of 2000 m, a width of 1 m. The dam is located on 
the middle of the channel. The upstream and downstream water levels of the dam 
are 6 m and 2 m. Water is at rest at the initial time. The results at moments 
100 s and 200 s are compared with the analytical solution. The comparison shows 
that the Roe's approximation and the hybrid methods give a solution, closed to 
the analytical solution better than the Nessyahu-Tedmor and the Lax-Friedrichs 
methods. The Lax-Friedrichs method smears the solution a lot. The Preissman 
method even smears the shock more than the Lax-Friedrichs method due to large 
numerical viscosity. Figures 5 and 6 illustrate the results of the Roe 's approximation 
and the Preissmann methods 

1.1. 3. The dry bed dambreak problem 
This test has the same condition as the wet bed dambreak problem, apart from 

the downstream region of the dam is dry, and is used to verify the schemes for 
the dambreak problem and investigate their behavior at the dry front of the wave. 
The analytical solution is the Ritter solution [5]. In the calculation the downstream 
water level is taken by 0.0001 m. 

The conclusion in this case is almost the same as in the above case. However, 
the Roe's approximation makes the tail of the wave more smeared with respect to 
the Nessyahu-Tadmor method, but has kept the necessary sharpness. The other 
methods seem to give the reasonable results . 

Figure 7 illustrates the result for the Roe's approximation method. 
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Fig. 7. The dry bed dambreak problem. Water levels. The Roe's approximation method 

1.1. 4. The dry bed dambreak problem with fricti on 
The aim and conditions of this test are the same as in the above case. The 

difference is that the friction is taken into account with the Chezy coefficient of 
40m112 /s. The analytical solution is the Dressler solution [6] . The results show that 
the methods approximate well the Dressler solution. 

Figure 8 illustrates the result for the Roe's approximation method at time mo­
ments of 40s. 

With the splitting technique where the source term integral is evaluated accord­
ing to the pointwise approach, the results are good for the rectangular channel with 
the constant width. In general case, when the channel has the variable bed level 
and width , they become much worst with the oscillation at the nonsmooth part of 
t he solution. 
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1.2. Roe's approximation with the mixed technique for the source terms 
In this paragraph only the Roe's approximation with the mixed technique for 

the source terms will be used for testing. 

1 . 2.1. The water a t rest problem 
This test is used to verify t he discretization of the source term in case of water 

at rest. T he calculation is done for the rectangular channel of 1500 m length, and 
the variation of bed levels and widths are shown in figure 9. 

The upstream boundary condition is Q = 0 m3 /sand the downstream condition 
is H = 12 m. Water is at rest initially. The result (Figure 9b) shows that the 
numerical solution coincides with the analytical one. 
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1.2.2 Steady flow through a bump 
The description of this test is given above. In all cases numerical solutions 

approximate the analytical solution better in comparison with the pointwise source 
term approach. Figure 10 and Figure 11 illustrate the result. 
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Fig. 10. (a) The water at rest case. (b) Transcritical flow without shock 
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Fig. 11. (a) Transcritical flow with shock. (b) The subcritical flow 

1.2.3. The dry bed dambreak problem 
The description of this test is given above. The result (Figure 12) shows that 

the numerical solutions approximate well the analytical one. 

1.2 .4. The wet bed dambreak problem 
The description of this test is given above. The result (Figure 13) shows that 

the numerical solution coincides with the analytical one. 

1.2.5. The dry bed dambreak problem with friction 
The description of this test is given above. The result (Figure 14) shows that 

the numerical solution gives a good approximation to the analytical one. 
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Fig. 13. The wet bed dambreak problem. (a) Water levels, (b) Discharges 
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Fig. 14 . The dry bed dambreak problem with friction. (a) Water levels, (b) Discharges 

1.2.6. The dambreak problem with a local constriction 
This test is constructed by one experiment in the CADAM project. In this case, 
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the channel has a constriction at the downstream of the dam. The dam is simulated 
as a gate. The dam break wave is produced by the simultaneously opening the gate. 
A part of wave is reflected at the constriction and therefore the wave suffers from 
attenuation in propagation downstream. Due to the abrupt of the front wave and 
the different fl.ow regimes this test is very appropriated for verifying the schemes, 
both for one and two dimensional problems. The constriction has a width of 0.1 m. 
The channel is 0.5 m wide and its geometry is given in figure 15. 

Storage 
E ... 
c Constriction 

Fig. 15. The Channel geometry 

At the initial time the storage has a depth of 0.3 m, the downstream water level is 
0.003 m. The downstream boundary condition is a chute and the Strickler coefficient 
is 100m113 /s . 

The calculated results are compared with the experimental data at 4 location 
x = 5.1 m, 12.20 m, 14.70 m, 16.60 m and are illustrated in figures 16-17. It can be 
shown that the obtained numerical solution approximates to the analytical one and 
also to the result of the MASCARET model (of France) [7] . 

Gauge 1 ( G 1) shows the propagation of the rarefaction wave in the reservoir . 
This wave is correctly approximated. On the second gauge (G2) , we remark on 
the propagation with a negative velocity of a jump due to the constriction. The 
approximated solution models this discontinuity well. In addition, it is noticed that 
the time propagation (gauges 3 and 4) is well computed which is essential for dam­
break wave simulation. 
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Fig. 16. The dambreak problem with a local constriction. (a) X = 5.1 m, (b) X = 12.2 m 

Ztd - measurements, Ztt - numerical solution 
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1.2. 7. The hydrodyna:mic wave problem 
This test is described in [8] and is a test for the subcritical case. The result here 

is appropriated with the result, presented in [8] (Figure 18) 
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Fig . 18. The hydrodynamic wave. (a) Water depths, (b) Discharges 

1.2.8. The diffusion wave problem 
This test is described in [8] and is a test for the subcritical case also. The result 

here is coincided with the result , presented in [8] (Figure 19) 

1.2.9. The dynamic wave problem 
This test is used to verify schemes when the channel has the enough high bed 

slope, where the gravitational and friction forces are dominated. The channel is 
rectangular with a length of 10,000m, a bed slope of 0.005 and the Strickler coefficient 
is 31m113 / s. 

The initial condition is the uniform flow with the downstream water depth of 
2.49 m and the upstream discharge of 1000 m3 /s . The boundary condition is given as 
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for the hydrodynamic wave with T = 12 hours, Qmax = 2000 m3 /s, Tmax = 129000 s. 
The flow pattern is correct and is illustrated in figure 20. 
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at x =Om and x = 25000m 
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2. Preliminary evaluation of the Sonla-HoaBinh dambreak problem 

In this section, the Roe 's approximation with the mixed technique for the source 
terms will be used to carry out a preliminary evaluation of the Sonla-Hoabinh 
dambreak problem. 

Let us consider the river branch from the Vietnamese Chinese border to the 
Thao-Da confluence with a length of 570 km. The future Sonla dam is located at 
the Pa Vinh, which is 268 km far from Thao-da confluence. The Hoa Binh dam is 
located at 63 km from Thao-Da confluence. 

The initial water levels at the up- and downstream parts of the Hoa Binh dam 
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are 125 m and 14 m, at the upstream part of the Sonla dam- change from 265 to 
320 m. The upstream boundary condition is 3000 m3 /s and the downstream one is 
a discharge-water level relation. 

Dams are supposed to be simultaneously broken at time t = 0. The result 
shows that the maximum discharges through the Hoabinh dam and the Sonla dam 
are reached after approximately 200 s. The shock travel time from Hoa Binh to 
Thao-Da confluence is approximately 1,5 hour. 

This flow pattern is correct for the simultaneously dam-break wave and the result 
is approximately closed the result of the research project for the Son La dam break 
of the Institute of Mechanics. 

3. Conclusion 

In this part of the paper, the verification of 4 numerical methods for solv­
ing the Saint-Venant equations: the Lax-Friedrichs, the Self-adjusting Hybrid, the 
Nessyahu-Tedmor, and the Roe's approximation methods, are presented. The source 
terms can be discretized following the pointwise, upwind or mixed approaches. By 
the numerical tests it is recommended that upwind and the mixed approaches are 
more appropriated to the Saint-Venant equations, the Roe's approximation is an 
efficient method and can be used with all the source term approaches of discretiza­
tion. 

The numerical tests are carried out for all flow regimes: sub-, super- and trans­
critical flow. Then the Roe's approximation with the upwind and mixed technique 
for the source terms is used for a preliminary evaluation of the Son La - Hoa Binh 
dambreak problem. 
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the Red River System Project and the National Basic Research Program in Natural 
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VE MOT so PHUONG PHAP GIAI so HE PHUONG TRINH SAINT-VENANT 

. MQT CHIEU TRONG CHE DQ DONG CHAY TONG QUAT. 
"" ,J ' " 

PHAN 2: KIEM D~NH VA UNG DlJNG 

Phan 1 ctl.a bai bao [1] da trl.nh bay m(>t so phmmg phap giai so h~ phuang trl.nh 
Saint-Venant m9t chieu trong che d9 dong chay tong quat, khi dong chay co the la 
hon hqp gill-a chay em va chay xiet . Phan 2 ctl.a bai bao gi&i thi~u ket qua kiem tra 
bang m9t lo9't cac bai toan mau, bao ham ca 3 che d9 dong chay: em, xiet, chuyen 
nguang. Cac ket qua cho thay vi$c XU ly thanh phan nguon hon hqp tot han so 
v6i each XU ly theo d9'ng diem, va bien doi thanh phan nguon can phru het sue th~n 
trc;mg vi no co the dan den lai giru so kh6ng v~t ly. Phuong phap xap xi Roe v6i 
each XU ly hon hqp thanh phan nguon sau do duqc ap d\mg danh gia thu nghi$m 
bai toan va d~p cac d~p San La va Hoa Binh. 
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