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ON THE ELASTO-PLASTIC STABILITY 
PROBLEM OF SHELLS OF REVOLUTION 

DAO HUY BICH 

Hanoi National University 

Summary. This paper deals with the elasto-plastic stability problems of shells of revolution 
subjected to complex loading process. The governing equations were derived and were solved 
by using the Bubnov-Galerkin method and the loading parameter method. Some examples 
were considered. 

1. Introduction 

Numerous solutions of the elasto-plastic stability problems of rectangular plates 
and circular cylindrical shells have been published in the literature by using different 
theories of plasticity. The critical loads acting on these structures were determined 
and the influence on which of the complex loading process was considered. 

Many structural shell configurations are shells of revolution, the elastic stability 
problems of which were investigated widely, but for elasto-plastic problems there was 
a few only results, especially when considering the complex loading process acting 
on these structures [5, 6, 8, 10]. 

In this paper by using the theory of elasto-plastic processes and the adjacent­
equilibrium criterion we derive the governing equations of the elasto-plastic stability 
problem of shells of revolution. Here we restrict ourselves, the applied load is axisym­
metric and the linear bending equations are used for the prebuckling deformation. 
The Bubnov-Galerkin method and the loading parameter method are applied in 
solving problem. 

For illustration we consider the axisymmetric buckling of a circular plate sub­
jected to uniform compressive loading and a shallow spherical cap subjected to 
uniform external pressure. From the obtained results we can get again the results 
of Timoshenko and Hutchinson for elastic shells, this fact provides the reliability of 
the obtained results. 

2. Prebuckling state of a shell of revolution 

Let us consider a shell of revolution, the middle surface of which may be form 
by rotation of a plane curve about an axis in the plane of the curve. Planes normal 
to axis of revolution intersect the surface in curves called parallels and planes that 
contain the axis intersect the surface in curves called meridians. Points on the surface 
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may be referred to coordinates <p , e, where <p denotes the angle between the axis of 
revolution and a normal to the surface and () is a circumferential coordinate. The 
principal radii of curvature of the surface in the <p and e directions may be denoted 
by R2 and R1 respectively. It is convenient to introduce an additional variable r 
defined by the relation 

r = R1 sin <p, 
dr 
d<p = R2 cos <p. (2.1) 

If the applied load is axisymmetric, the deformation also is axisymmetric prior to 
loss of stability. In the pre buckling state the membrane forces N~, N2, N~0 are 
functions of <p alone, they satisfy the corresponding linear membrane equations [3] 

d 0 0 
d<p (rNip) - R2No cos<p = -rR2pip , 

d ( 0 ) 0 d<p r Nipo + R2Nipo cos <p = -r R2p0 , (2.2) 

rN~ + R2N~ sin<p = rR2Pz· 

where N~ =ha~, N2 = ha2, N~0 = ha~0 . 
Equations are seen to be statically determinate, so that solutions can be obtained 

without use of constitutive and kinematic relations. If the shell is not subjected to 
torsional loading, N~0 = 0 and the second of equations is discarded. 

3. Stability equations 
The linear stability equation may be obtained by application of the adjacent­

equilibrium criterion. For this purpose we put 

u = u0 + <5u , 

v = v0 + <5v , 

w = w0 + <5w, 

where ( u0 , v0 , w0 ) represent the equilibrium configuration whose stability is under 
consideration, ( u, v, w) is an adjacent equilibrium configuration corresponding to 
the same value of applied load as configuration (u0 , v0 , w0 ) and (<5u, <5v , <5w) is an 
arbitrary small incremental displacement. Furthermore 

Nip= N~ + <5Nip , 

No= N~ + <5No , 

Nipo = N~0 + <5Nipo, 

Mip = <5Mip 

Mo= <5Mo 

Mipo = <5Mipo , 

where <5Nip , <5N0 , <5Nipo and 8Mip, 8M0 , 8Mipo are generalized force and moment 
increments corresponding to (ou, ov, ow). Although the prebuckling state is axisym­
metric, but the post-buckling is more general , so that the stability equations of shells 
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where 

bQ = ~obw 
/JO r 8() ' 

N~, N2, N~0 are determined from equations (2.2) of the pre buckling state. 
According to the theory of elasto-plastic deformation processes the force and mo­

ment intensities are related to the internal stresses and deformation by the equations 
[4] 

[ 
2N o-o &:* + o-o &:* + 20-0 &* J 

bN = h - (2&* +be*)+(¢' - N) 'P 'P 
0 0 ipO ipO o-o 

'P 3 'P 0 02 'P ' 
(Tu 

[ 
2N o-0 &* + o-0 be* + 2o-0 be* J 

bN. = h - (2be* +be*)+(¢' - N) 'P 'P 
0 0 ipO ipO o-0 

0 3 ° 'P 02 o ' 
(Tu 

(3.2) 

- [2N * I o-~&~ + CT2be9 + 2CT~obe~() 0 ] 
bNipo - h -

3 
beipo + (¢ - N) 2 CTipo 

o-0 
u 

(3.3) 

where 
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and the linear middle surface kinematic relations are of the form 

The obtained equations ( 3.1) ...;- ( 3.4) form a closed system of homogeneous equa­
tions of the elasto-plastic stability problem of shell of revolution. Combining bound­
ary conditions to this system we can get the solution of the problem by using the 
Bubnov-Galerkin method and the loading parameter method. For illustration, solu­
tions of these equations are discussed in consideration of circular plates and spherical 
caps. 

4. Circular plates 
The middle plane of a circular plate may be defined by polar coordinates r and 

(). in specialization of t he shell of revolution equations for the plate, R1 and R2 go 
to infinity, the angle r.p goes to zero, sin r.p = 0, cos r.p = 1 and lim R2dr.p = dr. 

R2-400 

The equation (3.1) become 

8 88Nre 
ar (r8Nr) + [)() - 8Ne = 0, 

8 88Ne 
ar (r8Nre) + 7fB + 8Nre = 0, (4.1) 

82 
( bM) 2(a

2
8Mr9 ~ 88Mre) ~ 82

8Me _ 88M9 _ 
fJr2 r r + 8r8() + r [)() + r 8()2 ar 

[
8( 0 0 [)( 0 0 ] - fJr rNr8f3r + rNre8f3e) + [)() Nre8f3r + Ne8f3e) = 0 

where the subscript r.p has been replaced by r . 
The equations (3.2), (3.3) are the same, but replacing subscript r.p by r. The 

relations (3.4) now are of the form 

* 1 ( 88u ) * 1 [ [) (bu) 1 88v J 8Ee = - !:!() + 8v , 8Ere = -
2 

r-;:;- - + - [)() , 
r u ur r r ( 4.2) 

8xe = ~ ([)bf3e + 8f3r) , 8xre = ~ [r~ ( 8f3e) + ~ abf3r] . 
r [)() 2 8r r r [)() 
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For example we consider the axisymmetric buckling of a plate subjected to uni­
form compressive loading P = ph. Prebuckling state occurs in the plate 

a~= a2 = -p, N~ = N~ = -P, N~9 = 0 

ds . . p 
a~= /a~/ = p, dt = 2/cr/, Er= - 2¢'(s) (see [4]) 

thus !: = <f>'1s) or <f>'(s)ds = dp, i.e, p = <f>(s) =a~. 
Because of axisymmetric buckling the determined quantities do nod depend on 

variable(} and <5/39 = 0. The third equation of (4.1) specializes to the expression 

(4.3) 

and the relations (3.3) , (4.2) lead to the following 

OXr = ddbf3r ' bxe = bf3r ' 
r r 

(4.4) 

OMr = _ h
3 
[~N(2 db/3r + 0/3r) + (</>' _ N)(d0/3r + 0/3r)]' 

12 3 dr r dr r 

<5Me = _ h
3 
[~N(2 <5/3r + db/3r) + (</>' _ N)(db/3r + 0/3r)] . 

12 3 r dr dr r 

Integration of the equation ( 4.3) gives 

(4.5) 

but oMr = oM9 - 0 for p = 0, then C = 0. Substituting the expression of oMri 
<5M9 into the equation ( 4.5) we have 

2 d2
<5/3r d<5/3r _ ( _ 12p 2) 5:(3 _ O 

r dr' + r dr 1 ( ¢' + ~) h," u " - . 
(4.6) 

Let a 2 = 
12~ , the general solution of ( 4.6) is 

( </>' + 3 )h2 

11 , Yi are Bessel functions of first order of the first and second kinds respectively. 
But <5/3r = 0 at r = 0, Y1 (0) = oo , therefore C2 = 0 and 0/3r = C1J 1 (ar). 

If the plate is clamped on its edge, so <5/3r = 0 at r = a, where a is the plate radius , 
then J1 (aa) = 0, the smallest root for which J 1 = 0 is aa = 3.83. Consequently we 
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get the relation for defining critical load 

(4.7) 

. d<f> O"o </>( s) 
Smee ¢' = -d = Et(s), N = ~ = - = Ec(s) ands= <f>-1 (p), from (4.7) 'the 

s s s 
critical load Per· can be determined. 

For elastic stability of plate made of incompressible material Et(s) = Ec(s) = 3G, 
the expression ( 4. 7) reduces to the result of Timoshenko [9]. 

The equation ( 4.6) may be solved by Bubnov-Galerkin method by putting of3r = 
Ar(a - r), which satisfies conditions of3r = 0 at r = 0 and r =a. Substituting the 
expression of of3r into (4.6), multiplying obtained result with r(a-r) and integrating 
over the plate surface, 0 ~ r ~ a, 0 ~ (} ~ 27r, gives 

N h2 

P = 1.25(¢' + 3) a2' 

the error consists of more than 23. 

5. Shallow spherical shell 

(4.8) 

Points of the middle surface may be referred to coordinates r and (}, the rise 
of the shell is much smaller than the base radius a. We have R2 = R = const , 

r 
sin c.p = R and approximately cos c.p ~ 1, R 2 dc.p = dr . 

The governing equations now have the form 

where oNri oN0 , oNre - generalized force increments 

o Nr = h rn N ( 2oc; + oc0) + ( </>' - N) (l~ oc; + (l~ ~~~ + 20"~eoc;e O"~] , 

oNe = h [~3 N(2oc0 + oc;) + (</>' - N) O"~oc; + O"~o:~ + 2<7~eoc;e (l2], (5.2) 
O"u 

oN = h[~No * (,-1,' - N)O"~oc; + 0"2i5c9 + 20"~e&:e o J rB 3 ere + 'f' o2 O"rB ' 
O"u 

14 



and oMr, oMo, oMro - generalized moment increments 

(5.3) 

The middle surface kinematic relations in this case are of the form 

* obv bw * 1 (obu ) bw bc:*o = ~ [r!__ (bu) + ~ obv] ·, 
bcT = or + R ' bco = :;: o() + bv + R ' T 2 Br r r 8() 

(5.4) 

bxr = a~~r , bxo = ~ ( 8~:0 + bf3r), bxr,o = ~ [r ! (15~0 ) + ~ a~:r J, (5.5) 

b(3 = aow b 40 = ~ aow . 
T Or l /Ji r o() 
The equations (5.1)-;- (5.5) lead to a coupled set of three homogeneous equations 

in bu, bv , bw. This set can be reduced to two equations in bw and a stress function 
F . 

From (5.4) we can get the compatity equation 

~ o2
bc; - ~ obc; + ~~ (r200ce) - ~~(r&*) = /::::,.(jw (5.6) 

r 2 oB2 r or r 2 or or r 2 or8B ro R ' 

a2 1 a 1 02 

where !::::,. = 8r2 + :;: or + r2 o()2 . 
Inversely, from (5.2) the strain increments can be expressed as follows 

oc; = 2~h (2oNr - oNo) 

1 ( 1 1 ) [( 0 0) ( 0 0) 0 ] 20"~ - ()2 + - - - - 20"r - O"o ONr + 20"0 - O"r bNo + 60"robNro 2 , 
4h </l N (Jo 

u 

bc0 = 2~h (2bNo - bNr) (5.7) 

1 ( 1 1 ) [( 0 0 ( 0 0) 0 ] 20"2 - ()~ + 4h </l - N 20"T - O"o)bNT + 20"0 - ()T oNo + 60"robNro ()~2 ' 

* 3 3 ( 1 1 ) [ 0 0) ( 0 0 0 ] O"~o OEro = 2Nh oNro + 2h ¢' - N (20"T - ()(} bNT + 20"0 - O"T)bNo + 60"robNro ()o2 ' 
u 

Two first equations (5 .1) are satisfied identically if 

1 oF 1 o2F o2F 
bNr = :;: or + r2 o()2 ' bNo = or2 ' bNro = _!___ (~ oF) · 

or r o() 
(5 .8) 
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The third equation of (5.l)and the equation (5.6) in use of expressions (5.3), (5.7) 
and (5.8) lead to the equations for w and F . 

For example we consider a spherical cap subjected to uniform external pressure p. 
Let us assume the prebuckling state may be approximated by a membrane analysis, 

h N o - No - - R No - h o - o - pR o - o - I o I - pR t en r - (} - p 2' rO - 0, SO t at (Jr - <Jo - - 2h' fJrO - 0, <Ju - <Jr - 2h' 

and <J~ = <f>(s). 
In this case, the third equation of (5.1) has the form 

8
2 

( '5M ) 2 (8
2
'5Mro ~ 8'5Mro) 

8r2 r r + 8r8(} + r [)(} 

+ ~ a2'5Mo - 8'5Mo - !_('5Nr + '5No) - pR l:lw = 0 (5.9) 
r 8(}2 or R 2 

and the internal moment increments (5.3), the strain increments (5.7) are rewritten 
as follows 

'5M = _ h
3 

[2N ( 28
2
8w ~ 82

6w ~ 86w) (,1..' _ N)l:l'5 J 
r 12 3 8r2 + r 2 [)(}2 + r 8r + '+' w ' 

'5M = _ h
3 

[2N (2- 8
2
'5w ~ 8'5w 8

2
'5w) (,1..' _ N)l:l'5 J 

(} 12 3 r 2 [)(}2 + r 8r + 8r2 + 'f' w ) 

'5Mro = - h3 N(~ 325w - ~ 8'5w). 
18 r 8ro(J r 2 [)(} 

(5.10) 

* _ 1 ( 2 8 F 2 o2 
F 8

2 
F) 1 ( 1 1 ) F 

'5cr - 2N h ;: or + r 2 o(J2 - or2 + 2h </>' - N fl ' 

* _ 1 ( 8
2 
F 1 8F 1 8

2 
F) 1 ( 1 1 ) l:lF 

&o - 2N h 2 8r2 - ;: or - r 2 8(}2 + 2h </>' - N ' 

* 3 ( 1 8 F 1 o2 
F ) 

'5Ero = 2Nh r 2 8(} - ;: or8(} . (5.11) 

Introduction of expressions (5.8), (5.10) into equation (5.9) and expressions 
(5.11) into equation (5.6) gives 

h3 (N + </>') l:ll:l'5w .+ pR l:l'5w = - l:lF (5.12) 
12 3 2 R ' 

(]__ + ~) l:ll:lF = 
2

h l:l'5w. (5.13) 
N </>' R 

The Bubnov-:Galerkin method can be applied to the system of equations (5.12), 
(5.13) by choosing expressions of F and 6w, satisfying boundary conditions. In re­
sults we get the equation for finding critical load. Otherwise, because of the appear­
ance of only Laplace operator in (5.12), (5 .13) we can use the following coordinate 
transformation [7] . 

x = r cos (}, y = r sin (}, 
82 1 a 1 8r2 f P 82 

l:l= -+--+-- = -+-8r2 r 8r r 2 o(J2 8x2 8y2 ) 
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the differential equations are seen to be satisfied by solutions of the form 

. (k1x) . (k2Y) F=Csm R sm R, 

where ki, k2 are wavelength parameters. Introduction of these expressions into 
2hR • 

(5.13) gives C = - 1 1 · Substituting obtained result for F and 

(N+ </>')(k~+k~) 
expression of 8w into (5.12) yields 

_ 4h [ 1 h
2 

(N ') ( 1 1) 2 2 ] 
P - ( 1 1 ) k2 + k2 + 24R2 3 + </> N + "'' ( ki + k2) . 

R -+- i 2 ~ 
N </>' 

An approximat.e expression for the critical pressure may be obtained by minimization 
of p with respect to kf + k~. The smallest pis found as following 

(N + 3</>')N</>' 
N+</>' 

(5.14) 

Taking into account N = a~ = ¢(s) = Ec(s), ¢' = Et(s), s = ¢- 1 (a~); by the 
s s 

loading parameter method from (5.14) we can get the critical pressure Per · 
For an elastic shell of incompressible material Ec(s) = Et(s) = 3G, from (5.14) 

we obtain 

this value is the same as that given in [2, 7]. 

Remark. In [8] these two particular cases; circular plate under uniform compressive 
load and spherical cap under external pressure, have been considered by use of the 
incremental theory of plasticity and the deformation theory of plasticity by general­
izing directly formulae of elastic solutions. But our formulation can be applied not 
only to these particular cases, but to more general cases of shells of revolution as 
well. The investigated cases only play a role of illustration of the method. 

6. Conclusions 
The governing equations of the elastoplastic stability problem of shells of re­

volution subjected to complex loading are derived by using theory of elastoplastic 
processes and the adjacent-equilibrium criterion. 

The Bubnov-Galerkin method and the loading parameter method can be used 
for solving problem, in some particular investigated cases we can get analytical 
solutions. 
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The elasto-plastic stability of circular plates and spherical shells is investigated. 
Obtained expressions of critical loads reduce to results of Timoshenko and Hutchin­
son for elastic shells. 

This publication is completed with financial support of the Council for Natural 
Science of Vietnam. 
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VE BAI TOAN ON f)~NH DAN DEO CUA VO TRON XOAY 

Bai toan 6n <'4nh dan hoi clia vo tron xoay da duqc giru quyet, tuy nhien 6n 
dtnh dan deo con it duqc quan tam. Trong bai bao nay, SU d\mg ly thuyet qua 
trlnh dan deo tac gia thiet l~p cac h~ thuc ca ban clia bai toan 6n dtnh dan deo 
clia vo tron xoay ch!u qua trlnh d~t tai phuc t;;i,p. Co the su d\mg phuang phap 
Bubnov-Galerkin va phuang phap tham so tfil de giru bai toan, trong m(>t so trucmg 
hqp rieng co the nh~n duqc nghi~m giai tich. De minh h9a da khao sat 6n d!nh dan 
deo clia ban tron va VO cau. Tir bieu thuc nh~n duqc cua Ive t&i h~n co the nh~n 
l~i ket qua clia Timoshenko va Hutchinson cho VO dan hoi. Dieu nay bao dam d9 
tin c~y clia phuang phap tfnh toan. 
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