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ABSTRACT. The authors prove a theorem on uniqueness of elastic continuation in a 
nonhomogeneous elastic solid with a displacement-dependent tension modulus, generalizing 
an earlier result by Ang, Ikehata, Trong and Yamamoto for a nonhomogeneous linear elastic 
solid. 

Let D be a bounded domain in R 3 representing an elastic body. We consider 
the problem of uniqueness for the determination of the stress field in n from the 
displacements and surface stresses given on an open portion r of the boundary an 
of n, a problem referred to as one of elastic continuation. In [AITY], uniqueness 
of elastic continuation is proved for a nonhomogeneous linear elastic solid. In the 
present paper, we address the problem of uniqueness of elastic continuation in the 
case of a nonhomogeneous elastic solid with a tension modulus depending not only 
on x = (x1 , x 2, x3) but also on the displacement u = (u1 , u2 , u3). More precisely, we 
shall assume 

>. = >.(x, u), (1) 

where >. is a multiple of the tension modulus (cf. [TG]). 
Let x = (x1,x2,X3) be in DC R3 . For (i,j,k) = (1,2,3),(2,3,1),(3,1,2), 

we denote by CJi, Tjk the components of the normal stress and of the shear stress 
corresponding to the xi-direction. We shall consider the following system (cf. [TG]) 

OCJi OTij OTik x -+-+-- = - i 
oxi &xj &xk 

subject to the boundary conditions 

and 

1 

(2) 

(3) 

(4) 



where u0 = (u~, ug, ug) and n = (n1, n2, n3) is the outer unit normal vector to an. 
The displacement u = (u1 , u2, u3) and the stresses ai , Tjk satisfy the following 

relations (cf. [TG]) 

where 

From now on, we shall assume that 

and that 

,\(x,u) > 0 for all x E 0, u E R 3
. 

Following is the main result of this paper. 

(5) 

(6) 

(7) 

(8) 

Theorem 1. Let r be C 1 -smooth, let,\ , G be respectively in C2 (R3 x R 3 ) , C2 (R3 ) . 

Then the system ( 2) , ( 5 )-( 8) subjected to conditions ( 1) , ( 3) , ( 4) has at most one 
solution u in ( C 3 (n u r) )3 . 

We note that , with an almost identical proof, we obtain a result similar to that 
of Theorem 1 in the case of a two dimensional elastic body. 

The proof of Theorem 1 relies on the following 

Lemma 1. Let r , ,\, G be as in Theorem 1 and let u1 = (ui, u~ , uD , u2 = (ui , u~, uD 
be in (C3(0ur))3 and satisfy (2)-(4). Then there exists an open subset r 0 of r such 
that 

Vui = Vui , Vd = VcI, i = 1, 2, 3 on f 0 , 

where \7 = ( f:lo , f:)o , f:)o ) . 
uX1 u X2 uX3 

Proof. By (3) , one has , 

u1(x) = u0 (x) = u2 (x) x Er. 

Hence, we have 

,\(x, u1(x)) = ,\(x, u2(x)) for all x E f. 
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For i,j = 1,2,3, we put 

1 2 ci = ci - ci' 

tij =Ti~ - Ti~ ' (10) 

where c} , Ti~' k = 1, 2, i,j = 1, 2, 3 are defined from (6), (7) corresponding to uk. 
From (3), one has 

vi = 0 on r, i = 1, 2, 3. (11) 

We have to consider the following three cases 

(i) There is a z0 in r such that n(z0 ) = (n1(z0 ),n2(z0 ),n3(z0 )) satisfies 
n1(z0 )n2(zo)n3(z0 ) i= 0. In this case, we can find a neigborhood U of z0 such that 
n1(z)n2(z)n3(z) i= 0 for all z in u n rand we put ro = u n r . 

(ii) Case (i) does not hold and there are z1 and an i E {1, 2, 3} such that ni(zi) = 

0 and ni(z1) i= 0 for j E {1 , 2,3} \ {i} . In this case, we can find a neighbohood U 
of Z1 such that ni(z) = 0 and nj(z) /= 0 for j E {1 , 2, 3} \ {i} and z EU n f = f 0 . 

(iii) Cases (i), (ii) do not hold and there are z2 E rand i,j E {1, 2, 3}, ii= j 
such that ni(z2) = ni(z2) = 0 and that nk(z2) i= 0 for { k} = {1, 2, 3} \ { i, j}. By the 
above argument, we can choose f 0 c r such that ni(z) = ni(z) = 0 and nk(z) i= 0 
for {k} = {1,2,3} \ {i,j} and z E r 0 . 

We shall give the proof for Case (i). The proof of the lemma in Cases (ii) , (iii) 
are similar to (in fact , easier than) that for Case (i), and hence, will be omitted. 

In Case (i), the vectors (0, -n3(z), n2(z)) , (-n3(z) , 0, n1 (z)) are vectors tangen­
tial to f 0 for all z inf 0. Hence, taking the tangential derivatives of (11) respectively 
in the directions of the above vectors , we get , for i, j = 1, 2, 3, 

avi nj 
- = -ci On fa. 
axj ni 

(12) 

Hence 

on ro (13) 

for i f=j, i,j = 1,2,3. 
Substituting (12), (13) into ( 4)-gives after some rearrangements 

( 
1 - 2v) 

1 + n? ci + cj +ck= 0 
t 

on ro, (14) 

where ii= j , j i= k, k i= i, i,j, k = 1, 2, 3 and v = .A/ 2(G +.A). 
The system (14) implies 

ci = 0 On fo, i = 1,2,3. (15) 
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In view of (12), (15) we get 

'Vvi = 0 on ro, i = 1, 2, 3. 

Now, from (16) , we can take the tangential derivatives of (15) to get 

n1 8ci 

ni 8xi 
on ro, i =I= j. 

Using (9), (15), (16), (17) we get , on r 0 , 

Substituting (18) , (19) into (2) one gets on f 0 

for (i,j , k) = (1 , 2, 3) , (2, 3, 1), (3 , 1, 2) successively. 
From the system ( 20) we get 

Bci = 0 r 2 3 on 0 , i = 1, , . 
OXi 

In view of (17) , (21) one has 

on ro , i = 1, 2, 3. 

This completes the proof of Lemma 1. 
We now turn to the 

Proof of Theorem 1. For convenience, we put 

Substituting (5) into (2) gives after some computations 

G~uf + F/ = -Xi, i=l , 2,3 , l' =l , 2 

with 

1 £ 8e£ a,\£ £ 8G 8uf 1 8G £ 1 BG £ 
Fi=(,\ + G)-;:;- + ~e + 2--;;;--a + c-a r i j + G-a rik 

U Xi U Xi U Xi Xi X j X k 
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(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 



for£= 1, 2, (i,j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). 
Differentiating (22) with respect to xi, one gets 

(23) 

where£, (i,j, k) are as in the formulas for F/ and 

Letting (i,j, k) = (1, 2, 3), (2, 3, l), (3 , 1, 2) successively in (23) and adding together 
the results thus obtained one has 

From (22), it follows that 

3 3 3 
t. t. ~ _ 1 (/JG [)).. t. ) ( t. ~ t. ~ 8Xi 

(,\ + 2G)~e - 2 ~ G /Jx· + /Ju· (x, u ) Fi +Xi)+~ F1i = - ~ /Jx· · 
i = l i i i = l i = l i 

From (22), (25) we get 

where i = 1,2,3, £ = 1,2 and 
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(25) 

(26) 

(27) 



Put vi= uz -uf, i = 1, 2, 3, V4 = e1 - e2 . By (26), (27) and the mean value theorem 
of Lagrange, we can find functions aijk, bip in C(n Ur), j, k = 1, 2, 3, i, p = 1, 2, 3, 4, 
such that 

(28) 

In view of Lemma 1, one has, for an open portion r 0 of r, 

(29) 

We claim that Vi= 0 on n (i = 1, 2, 3, 4) . In fact, let w be an open subset of R 3 \ n 
such that n 0 = w u r 0 u n is connected. Using the reflexive method (see, e.g. , [F], 
page 10), we ~an extend the functions aijk, bip (i,p = 1, 2, 3, 4, j, k = 1, 2, 3) to 
functions aijki bip continuous on no such that 

aijkln = aijk, 

bipln = bip· 

From (29), we can also extend vi to vi (i = 1, 2, 3, 4) in H1~c(n0 ) by putting 

xEn 

x Eno= w U f. 

(30) 

(31) 

(32) 

We shall prove that vi = 0 (i=l,2,3,4) on f 0. In view of (30)-(32), the system (28) 
gives 

Put 

3 fr 4 
A - ~ - Vj ~ -b - Q 
Ll.Vi + L...J aijk-8 + L...J ipVp = , 

Xk 
j,k=l p=l 

i = 1, 2, 3, 4. 

U = { x E n 0 : there is a neighbohood Nx of x in n 0 such that 

vi(z) = 0 for z E Nx, i = 1, 2, 3, 4}. 

(33) 

It is clear that U i= 0 (since w c U) and that U is relatively open in n 0 . It is 
sufficient to prove that 

u is relatively closed in no. (34) 

Indeed, if (34) holds, then by the connectedness of no one has u = no, i.e., vi = 0 
for all x in n 0 which will complete the proof of the theorem. Thus, we prove (34). 
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Let (zn) be a sequence in u and let Zo E no such that 

Zn -----+ zo as n --+ oo. (35) 

From (35), we can find an n 0 and an r > 0 such that the ball Br of radius r centered 
at Zn0 satisfies 

(36) 

We shall prove that vi(z) = 0 for all z E Br;4 . 

Using the estimates in [P], one has for a, m > 0 large enough 

(37) 

where p =Ix- Zn0 I, dV = dx1dx2dx3, i = 1,2, 3,4, and</>= </>(p) is a C 1-smooth 
function satisfying 

for p::;::: r, 

for p < r / 2. 

Using (33), (37), we shall get, after some rearrangements (see [P] for the details), 
that 

By letting a--+ +oo we see that vi = 0 on Br;4 . Since z0 E Br;4 , we get that z0 E U, 
i.e., U is closed in n0 . This completes the proof of our theorem. • 
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"' ; , ,J ,., 

VE TINH THAC TRIEN DUY NHAT 
' A ,J ' "' A "' ,., 

CUA VAT THE DAN HOI KHONG THUAN NHAT 

Cac tac gia chung minh m9t ~nh ly ve tinh thac trien duy nhat cua h$ v~t the 
dan hoi· khong thuan nhat v&i mo dun dan hoi phv thu(>c vao d!ch chuyen. Ket qua 
cua bai bao nay t6ng quat h6a cac ket qua cua cac tac gia Ang, Ikehata, Tr9ng, 
Yamamoto ve h$ v~t the dan hoi tuyen tfnh. 

TAC GIA GtJ'I BAI DANG CHU y 

Tu nam 2002 T~p chf Ca hQc (VIETNAM JOURNAL OF MECHANICS) duqc 
in v&i chat luang cao. Nha in nh~n in tu file .dvi duqc so~n thao b~ng Latex (trong 
d.6 c6 du hlnh ve & d~ng file.WMF ho~c file .BMP). 

V~y khi gtti bai cac tac gia can gtti cho toa so~n cac file hlnh du&i d~ng file.WMF 
hoac file.BMP . 

. Moi hlnh la m(>t file rieng, kich thu&c trang nen de hlnh vua b~ng kfch thu&c 
hlnh (de de ghep vao bai) v&i chieu ngang khong qua 15cm, chieu dung khong qua 
19cm. (xem tham khao t~p chf nam 2002 cac so 1-4) 
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