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Abstract. This paper presents a technique by which the transfer matrix in explicit form of
an orthotropic layer can be easily obtained. This transfer matrix is applicable for both the
wave propagation problem and the reflection/transmission problem. The obtained trans-
fer matrix is then employed to derive the explicit secular equation of Rayleigh waves prop-
agating in an orthotropic half-space coated by an orthotropic layer of arbitrary thickness.
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1. INTRODUCTION

Multilayered materials can be encountered in various branches of physics, studies
of wave propagation in layered media therefore plays an important role in practical ap-
plications. Applications of these studies include such technologically important areas as
earthquake prediction, underground fault mapping, oil and gas exploration, architectural
noise reduction, and the design of ultrasonic transducer. To compute the displacement
and stress field of waves propagating in the layered system consisting of an arbitrary
number of different homogeneous layers are applied the transfer matrix method [1, 2],
the stiffness matrix method [3], the impedance surface method [4], the R/T method [5],
the global matrix method [6, 7], and among them the transfer matrix method is the sim-
plest and was earliest proposed. For the transfer matrix method, the transfer matrix of
the layered system (called ”global transfer matrix”) is obtained by simple multiplication
of each layer transfer matrix. Therefore, it is needed to derive explicit expressions of el-
ements of the layer transfer matrices. Thompson [1] derived explicit expressions of the
transfer matrix elements for an isotropic layer. It is not easy to obtain explicit expressions
of the transfer matrix elements for an anisotropic layer as mentioned in Crampin [8]. For
an orthotropic layer, explicit expressions of the transfer matrix elements were reported
in [9], but without the detail derivation. They were reported again in [10] in a more con-
venient form for calculations. According to the author of the paper [9], in order to get
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these explicit expressions, first, the solution in exponential form of an orthotropic layer
was employed, then a four-order system of linear algebraic equations must be solved.
Since the explicit solution expressions of that system are rather cumbersome, it is not
easy to arrive at the explicit expressions of elements of the orthotropic-layer transfer ma-
trix. It seems that approach is not feasible to get explicit transfer matrix for a monoclinic
layer with the symmetry plane x1 = 0 or x2 = 0.

In this paper, we provide a technique by which explicit expressions of the transfer
matrix elements for an orthotropic layer are easily derived. This technique is based on the
layer solution expressed in terms of hyperbolic-sin and hyperbolic-cos functions, sinh(.)
and cosh(.). In order to derive these explicit expressions we only have to solve two
second-order systems of linear algebraic equations. The derivation is therefore simple.
The obtained expressions look more compact in form than those reported in [9], and they
can be conveniently used for both the problem of wave reflection/transmission and the
one of wave propagation. With this technique we can derive explicit expressions of the
transfer matrix elements for a monoclinic layer with the symmetry x1 = 0 or x2 = 0.
These expressions will be reported elsewhere.

As an application of the obtained explicit expressions, they are employed along
with the effective boundary condition method [11,12] to derive the explicit secular equa-
tion of Rayleigh waves in an orthotropic half-space coated an orthotropic layer with ar-
bitrary thickness. This secular equation recovers the one derived by Ben-Menahem and
Singh [13] for the isotropic case as a special case. The converting of the obtained secular
equation to the secular equation (16) in Ref. [14] reveals some misprints of the latter.

2. DERIVATION OF EXPLICIT EXPRESSIONS OF ELEMENTS OF THE TRANSFER
MATRIX FOR AN ORTHOTROPIC LAYER

Consider a compressible orthotropic elastic layer with uniform thickness h occu-
pying the domain a ≤ x2 ≤ b, b− a = h. We are interested in the plane strain such that

ūi = ūi(x1, x2, t), i = 1, 2, ū3 ≡ 0, (1)

where ūi are displacement components of the layer, t is the time. In the absence of body
forces the equations of motion are

σ̄11,1 + σ̄12,2 = ρ̄ ¨̄u1, σ̄12,1 + σ̄22,2 = ρ̄ ¨̄u2, (2)

where σ̄ij are stress components of the layer, commas signify differentiation with respect
to xk, a dot indicates differentiation with respect to t. For an orthotropic material the
strain-stress relation is of the form

σ̄11 = c̄11ū1,1 + c̄12ū2,2, σ̄22 = c̄12ū1,1 + c̄22ū2,2, σ̄12 = c̄66(ū1,2 + ū2,1), (3)

where c̄ij are material constants of the layer. Substituting (3) into (2) and taking into
account (1) yield

c̄11ū1,11 + c̄66ū1,22 + (c̄12 + c̄66)ū2,12 = ρ̄ ¨̄u1 ,
(c̄12 + c̄66)ū1,12 + c̄66ū2,11 + c̄22ū2,22 = ρ̄ ¨̄u2 , (4)
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Now we consider the propagation of a plane wave traveling in the x1-direction with ve-
locity c and wave number k. It is not difficult to verify that the displacement components
of the wave, that satisfy Eqs. (4), are given by

ū1 = Ū1(x2)eik(x1−ct), ū2 = Ū2(x2)eik(x1−ct), (5)

where

Ū1(x2) = A1chb̄1y + A2shb̄1y + A3chb̄2y + A4shb̄2y,

Ū2(x2) = i
[
α1
(

A1shb̄1y + A2chb̄1y
)
+ α2

(
A3shb̄2y + A4chb̄2y

)]
, (6)

y = k(x2 − b), A1, A2, A3, A4 are constants, ᾱk and b̄k are given by

ᾱk = −
(c̄12 + c̄66)b̄k

c̄22b̄2
k − c̄66 + X̄

, k = 1, 2, X̄ = ρ̄c2,

b̄1 =

√
S̄ +
√

S̄2 − 4P̄
2

, b̄2 =

√
S̄−
√

S̄2 − 4P̄
2

,

S̄ =
c̄22(c̄11 − X̄) + c̄66(c̄66 − X̄)− (c̄12 + c̄66)2

c̄22c̄66
,

P̄ =
(c̄11 − X̄)(c̄66 − X̄)

c̄22c̄66
. (7)

Note that b̄1 and b̄2 are complex in general and no requirements are imposed on their real
and imaginary parts. On use of Eqs. (5)-(7) into (3) we have

σ̄12 = kΣ̄1(x2)eik(x1−ct), σ̄22 = kΣ̄2(x2)eik(x1−ct), (8)

where

Σ̄1(x2) = β̄1
(

A1shb̄1y + A2chb̄1y
)
+ β̄2(A3shb̄2y + A4chb̄2y),

Σ̄2(x2) = i
[
γ̄1
(

A1chb̄1y + A2shb̄1y
)
+ γ̄2

(
A3chb̄2y + A4shb̄2y)

]
,

(9)

and
β̄n = c̄66(b̄n − ᾱn), γ̄n = c̄12 + c̄22b̄nᾱn, n = 1, 2. (10)

Remark 1:
For the wave propagation problem c is the wave velocity (to be determined) of

Rayleigh, Stoneley or Lamb wave and k = ω/c is the wave number (ω is the given wave
circular frequency), while for the reflection and/or transmission problem c = c0/sinθ0 (is
given) where c0 is the velocity of incident wave, θ0 (0 < θ0 ≤ π/2) is the incident angle
and k = k0sinθ0, k0 = ω/c0, ω is also given.

Putting x2 = b in Eqs. (6) and (9) leads to

Ū1(b) = A1 + A3, Ū2(b) = i(ᾱ1A2 + ᾱ2A4),

Σ̄1(b) = β̄1A2 + β̄2A4, Σ̄2(b) = i(γ̄1A1 + γ̄2A3).
(11)
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Solving the system (11) for A1, A2, A3, A4 we have

A1 =
γ̄2

[γ̄]
Ū1(b) +

i
[γ̄]

Σ̄2(b), A2 =
iβ̄2

[ᾱ; β̄]
Ū2(b) +

ᾱ2

[ᾱ; β̄]
Σ̄1(b),

A3 = − γ̄1

[γ̄]
Ū1(b)−

i
[γ̄]

Σ̄2(b), A4 = − iβ̄1

[ᾱ; β̄]
Ū2(b)−

ᾱ1

[ᾱ; β̄]
Σ̄1(b), (12)

here, for the seeking of simplicity, we use the notations

[ f ; g] := f2g1 − f1g2, [ f ; g](+) := f2g1 + f1g2, [ f ] := f2 − f1, [ f ](+) := f2 + f1. (13)

Substitution of (12) into (6), (9) and taking x2 = a yields

ξ(a) = Tξ(b), (14)

where ξ(.) = [Ū1(.) Ū2(.) Σ̄1(.) Σ̄2(.)]T and

T =



[γ̄; chε]

[γ̄]

−i[β̄; shε]

[ᾱ; β̄]

−[ᾱ; shε]

[ᾱ; β̄]

−i[chε]

[γ̄]
−i[γ̄; ᾱshε]

[γ̄]

[ᾱchε; β̄]

[ᾱ; β̄]

−iᾱ1ᾱ2[chε]

[ᾱ; β̄]

−[ᾱshε]

[γ̄]
−[γ̄; β̄shε]

[γ̄]

−iβ̄1 β̄2[chε]

[ᾱ; β̄]

[ᾱ; β̄chε]

[ᾱ; β̄]

i[β̄shε]

[γ̄]
−iγ̄1γ̄2[chε]

[γ̄]

[β̄; γ̄shε]

[ᾱ; β̄]

−i[ᾱ; γ̄shε]

[ᾱ; β̄]

[γ̄chε]

[γ̄]


, (15)

here εn = εb̄n, n = 1, 2, ε = kh and [chε] = chε2 − chε1, [ᾱchε] = ᾱ2chε2 − ᾱ1chε1,
[ᾱ; β̄shε] = ᾱ2 β̄1shε1 − ᾱ2 β̄1shε1, ... Matrix T given by (15) is the transfer matrix for a
compressible orthotropic layer. It is not difficult to prove the equalities

t11 = t33, t12 = t43, t14 = t23, t21 = t34, t22 = t44, t32 = t41 , (16)

where tij are components of the transfer matrix T. Analogously, using the solution (5),
(6), (8), (9) with y = k(x2 − a) provides

ξ(b) = T̂ξ(a), (17)

where T̂ is given by (15) in which shε is replaced by −shε. In particular, it is

T̂ =



[γ̄; chε]

[γ̄]

i[β̄; shε]

[ᾱ; β̄]

[ᾱ; shε]

[ᾱ; β̄]

−i[chε]

[γ̄]
i[γ̄; ᾱshε]

[γ̄]

[ᾱchε; β̄]

[ᾱ; β̄]

−iᾱ1ᾱ2[chε]

[ᾱ; β̄]

[ᾱshε]

[γ̄]
[γ̄; β̄shε]

[γ̄]

−iβ̄1 β̄2[chε]

[ᾱ; β̄]

[ᾱ; β̄chε]

[ᾱ; β̄]

−i[β̄shε]

[γ̄]
−iγ̄1γ̄2[chε]

[γ̄]

−[β̄; γ̄shε]

[ᾱ; β̄]

i[ᾱ; γ̄shε]

[ᾱ; β̄]

[γ̄chε]

[γ̄]


. (18)

One can see that the following equalities are valid

t̂11 = t̂33, t̂12 = t̂43, t̂14 = t̂23, t̂21 = t̂34, t̂22 = t̂44, t̂32 = t̂41, (19)
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where t̂ij are components of the transfer matrix T̂. From (14) and (17) it implies: T̂ = T−1.
Remark 2:

(i) From (17) and (18) it follows

η(b) = Aη(a), (20)

where η(.) = [v̄1(.) v̄2(.) σ̄22(.) σ̄12(.)]T and

A =



[γ̄; chε]

[γ̄]

i[β̄; shε]

[ᾱ; β̄]

−c[chε]

[γ̄]

−ic[ᾱ; shε]

[ᾱ; β̄]
i[γ̄; ᾱshε]

[γ̄]

[ᾱchε; β̄]

[ᾱ; β̄]

−ic[ᾱshε]

[γ̄]

−cᾱ1ᾱ2[chε]

[ᾱ; β̄]
γ̄1γ̄2[chε]

c[γ̄]
−i[β̄; γ̄shε]

c[ᾱ; β̄]

[γ̄chε]

[γ̄]

i[ᾱ; γshε]

[ᾱ; β̄]
i[γ̄; β̄shε]

c[γ̄]
β̄1 β̄2[chε]

c[ᾱ; β̄]

−i[β̄shε]

[γ̄]

[ᾱ; β̄chε]

[ᾱ; β̄]


, (21)

v̄1 = −iωū1, v̄2 = −iωū2 are the components of the particle velocity.
From (19) it implies

A24 = A13, A33 = A22, A34 = A12, A42 = A31, A43 = A21, A44 = A11 , (22)

where Aij are components of the transfer matrix A. These relations were mentioned in
Ref. [10].

Comparing the matrix A with the layer transfer matrix reported in [9] reveals that
λxzxz in the expression for a11 in [9] must be replaced by λxxzz.

(ii) One can see that the expressions of elements of the transfer matrix A are simpler
in form than the corresponding expressions obtained by Solyanik [9].

3. EXPLICIT SECULAR EQUATION OF RAYLEIGH WAVES IN AN
ORTHOTROPIC HALF-SPACE COATED BY AN ORTHOTROPIC LAYER

Consider a compressible orthotropic elastic half-space x2 ≥ 0 overlaid by a com-
pressible orthotropic elastic layer with arbitrary thickness h occupying the domain −h ≤
x2 ≤ 0. It is assumed that the layer and the half-space are in welded contact with each
other and the top surface of the layer x2 = −h is free from traction. Note that same quan-
tities related to the half-space and the layer have the same symbol but are systematically
distinguished by a bar if pertaining to the layer.

3.1. Effective boundary conditions
Consider the propagation of a Rayleigh wave traveling with velocity c and wave

number k in the x1-direction, decaying in the x2-direction. From the traction-free condi-
tion: σ̄12 = σ̄22 = 0 at x2 = −h, using (14), (15) with a = −h, b = 0 and taking into
account the continuity of displacements and stresses through the interface x2 = 0 we
have

t31U1(0) + t32U2(0) + t33Σ1(0) + t34Σ2(0) = 0,

t41U1(0) + t42U2(0) + t43Σ1(0) + t44Σ2(0) = 0.
(23)
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The relations (23) is called the effective boundary conditions because the entire effect of
the layer on the half-space is exactly replaced with these conditions.

3.2. Explicit secular equation
Now we can ignore the layer and consider the propagation of a Rayleigh wave

traveling along surface x2 = 0 of the half-space in the x1-direction with velocity c, wave
number k and decaying in the x2-direction and satisfying the effective boundary condi-
tions (23). According to Vinh & Ogden [15], the displacements of the Rayleigh wave in
the half-space x2 > 0 are given by

u1 = U1(y)eik(x1−ct), u2 = U2(y)eik(x1−ct), y = k, x2 (24)

where
U1(y) = B1e−b1y + B2e−b2y, U2(y) = i(α1B1e−b1y + α2B2e−b2y), (25)

B1 and B2 are constants to be determined, and

αk =
(c12 + c66)bk

c22b2
k − c66 + X

, k = 1, 2, X = ρc2, (26)

b1 and b2 are two roots with positive real part of the following equation

b4 − Sb2 + P = 0, (27)

S and P are calculated by (7) without the bar symbol. It follows from (27) that

b2
1 + b2

2 = 2S, b2
1b2

2 = P. (28)

It is not difficult to show that if a Rayleigh wave exists (→ the real parts of b1 and b2 must
be positive), then (see [15])

0 < X < min{c66, c11}, (29)
and (see [16])

P > 0, S + P > 0, b1b2 =
√

P, b1 + b2 =

√
S + 2

√
P. (30)

Using expressions (24) and (25) into the strain-stress relation (3) provides

σ12 = kΣ1(y)eik(x1−ct), σ22 = kΣ2(y)eik(x1−ct), (31)

where
Σ1(y) = β1B1e−b1y + β2B2e−b2y, Σ2(y) = i(γ1B1e−b1y + γ2B2e−b2y), (32)

where
βk = −c66(bk + αk), γk = c12 − c22bkαk, k = 1, 2. (33)

Taking x2 = 0 in (25) and (32) gives

U1(0) = B1 + B2, U2(0) = i(α1B1 + α2B2),

Σ1(0) = β1B1 + β2B2, Σ2(0) = i(γ1B1 + γ2B2).
(34)

Substituting (34) into (23) leads to two linear equations for B1 and B2, namely

f (b1)B1 + f (b2)B2 = 0,

F(b1)B1 + F(b2)B2 = 0,
(35)
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where
f (bk) = t33βk + it34γk + t31 + it32αk

F(bk) = t43βk + it44γk + t41 + it42αk
(k = 1, 2) (36)

Due to B2
1 + B2

2 6= 0, the determinant of coefficients of the homogeneous system (35) must
vanish, therefore we have

f (b1)F(b2)− f (b2)F(b1) = 0. (37)

Using (36) into (37) and after some calculations we arrive at

i(t33t44 − t34t43)[γ; β]− (t33t41 − t43t31)[β] + i(t33t42 − t43t32)[α; β]

−i(t34t41 − t44t31)[γ]− (t34t42 − t44t32)[α; γ] + i(t31t42 − t32t41)[α] = 0.
(38)

With the help of (26) and (33), it is not difficult to verify that

[γ; β] =c66

{[
c2

12 − c22(c11 − X)
]
b1b2 + X(c11 − X)

}
θ,

[α; β] =c66(c11 − X)(b1 + b2)θ, [α; γ] = c66(c11 − X− c12b1b2)θ,

[α] =(X− c11 − c66b1b2)θ, [β] = [α; γ], [γ] = c22c66b1b2(b1 + b2)θ,

(39)

where b1b2 =
√

P, b1 + b2 =
√

S + 2
√

P and θ = (b2 − b1)/[(c12 + c66)b1b2]. After mul-
tiplying two sides of Eq. (38) by [γ̄][ᾱ; β̄]/θ and taking into account (39), this equation
becomes

A0 + B0chε1chε2 + C0shε1shε2 + D0chε1shε2 + E0shε1chε2 = 0, (40)

where A0, B0, C0, D0 and E0 are given by

A0 = 2β̄1 β̄2γ̄1γ̄2(X− c11 − c66
√

P)

− c66[ᾱ; β̄γ̄](+)
{[

c2
12 − c22(c11 − X)

]√
P + X(c11 − X)

}
− c66

[
γ̄1γ̄2[ᾱ; β̄](+) + β̄1 β̄2[γ̄]

(+)
]
(c11 − X− c12

√
P),

B0 = − A0 + c66[γ̄][ᾱ; β̄]
{[

c2
12 − c22(c11 − X)

]√
P + X(c11 − X)

}
,

C0 = [β̄2; γ̄2](+)(X− c11 − c66
√

P)

− c66[ᾱβ̄; γ̄](+)
{[

c2
12 − c22(c11 − X)

]√
P + X(c11 − X)

}
− c66

(
[ᾱβ̄; γ̄2](+) + [β̄2; γ̄](+)

)
(c11 − X− c12

√
P),

D0 = c66

[
β̄1γ̄2[γ̄](X− c11) + c22 β̄2γ̄1[ᾱ; β̄]

√
P
]√

S + 2
√

P,

E0 = c66

[
β̄2γ̄1[γ̄](c11 − X)− c22 β̄1γ̄2[ᾱ; β̄]

√
P
]√

S + 2
√

P.

(41)

Equation (40) is the desired secular equation. From (7), (10), (28), (30), (33) and (41), it is
clear that Eq. (40) is totally explicit.
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When ε = 0, Eq. (40) becomes A0 + B0 = 0, or equivalently

(c66 − X)
[
c2

12 − c22(c11 − X)
]
+ X
√

c22c66

√
(c11 − X)(c66 − X) = 0, (42)

according to the second of (41). This equation is the secular equation of Rayleigh waves
propagating along the traction-free surface of a compressible orthotropic half-space (see
Eq. (2.17) in [15]).

3.3. Two dimensionless forms of the secular equation
It is useful to convert the secular equation (40) into dimensionless form. To do that

we use the following dimensionless parameters (see also [11])

x =
X
c66

, e1 =
c11

c66
, e2 =

c22

c66
, e3 =

c12

c66
, ē1 =

c̄11

c̄66
, ē2 =

c̄66

c̄22
, ē3 =

c̄12

c̄66
,

rµ =
c̄66

c66
, rv =

c2

c̄2
, c2 =

√
c66

ρ
, c̄2 =

√
c̄66

ρ̄
. (43)

Dimensionless form 1:
By dividing two sides of Eq. (40) by (c66)5 it converts to

A1 + B1chε1chε2 + C1shε1shε2 + D1chε1shε2 + E1shε1chε2 = 0, (44)

where

A1 = 2β̄∗1 β̄∗2γ̄∗1 γ̄∗2
(

x− e1 −
√

P
)

− [ᾱ; β̄∗γ̄∗](+)
[
(e2

3 − e1e2 + e2x)
√

P + x(e1 − x)
]

−
(

γ̄∗1 γ̄∗2 [ᾱ; β̄∗](+) + β̄∗1 β̄∗2[γ̄
∗](+)

)(
e1 − x− e3

√
P
)
,

B1 = − A1 + [γ̄∗][ᾱ; β̄∗]
[
(e2

3 − e1e2 + e2x)
√

P + x(e1 − x)
]
,

C1 =
[
(β̄∗)2; (γ̄∗)2](+)(x− e1 −

√
P
)

− [ᾱβ̄∗; γ̄∗](+)
[
(e2

3 − e1e2 + e2x)
√

P + x(e1 − x)
]

−
(
[ᾱβ̄∗; (γ̄∗)2](+) + [(β̄∗)

2; γ̄∗](+)
)
(e1 − x− e3

√
P),

D1 =
[

β̄∗1γ̄∗2 [γ̄
∗](x− e1) + e2 β̄∗2γ̄∗1 [ᾱ; β̄∗]

√
P
]√

S + 2
√

P,

E1 =
[

β̄∗2γ̄∗1 [γ̄
∗](e1 − x)− e2 β̄∗1γ̄∗2 [ᾱ; β̄∗]

√
P
]√

S + 2
√

P ,

(45)

in which, the quantities ᾱk, β̄∗k and γ̄∗k , S and P are given by

ᾱk =
b̄2

k + r2
vx− ē1

(1 + ē3)b̄k
, β̄∗k = rµ(b̄k − ᾱk), γ̄∗k = rµ(ē3 +

ᾱk b̄k

ē2
), k = 1, 2

S =
e2(e1 − x) + 1− x− (e3 + 1)2

e2
, P =

(e1 − x)(1− x)
e2

, (46)
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b̄1, b̄2 are defined by (7) with P̄ and S̄ being expressed in terms of the dimensionless
parameters as

S̄ = (ē1 − r2
vx) + ē2

[
1− r2

vx− (ē3 + 1)2], P̄ = ē2(ē1 − r2
vx)(1− r2

vx) (47)

It is clear that the squared dimensionless velocity x of Rayleigh waves depends on nine
dimensionless parameters: ek, ēk (k = 1, 2, 3), rµ, rv and ε.

As an example, we use the secular equation (44) to compute the squared dimen-
sionless wave velocity x with e1 = 2.5, e2 = 3, e3 = 0.4, ē1 = 3.1, ē2 = 1, ē3 = 0.5, rµ =
0.5, rv = 2.8. Fig. 1 shows the velocity curves of first six modes in the interval ε ∈ [0 3].

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

ε

x

Fig. 1. Velocity curves of first six modes in the interval [0 3]. Here we take
e1 = 2.5, e2 = 3, e3 = 0.4, ē1 = 3.1, ē2 = 1, ē3 = 0.5, rµ = 0.5, rv = 2.8.

Dimensionless form 2:
Eq. (40) can be rewritten as follows

(B0 + C0)sh2[ ε(b̄1 + b̄2)

2
]
+ (B0 − C0)sh2[ ε(b̄1 − b̄2)

2
]

+
E0 + D0

2
sh[ε(b̄1 + b̄2)] +

E0 − D0

2
sh[ε(b̄1 − b̄2)] + A0 + B0 = 0,

(48)

Using (41) and the variables η and η̄ given by η =

√
c66 − ρc2

c11 − ρc2 , η̄ =

√
c̄66 − ρ̄c2

c̄11 − ρ̄c2 , after

some calculations we have
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(B0 + C0)

c66(c11 − X)
= − c̄66[ᾱ; β̄]2

f̄ (η̄)
η̄2 − 1

rµ

(b̄1 + b̄2)2

{
(1 + ηe−1/2

2 )
f̄ (η̄)

η̄2 − 1

− 2r−1
µ (1− e3e−1/2

2 η)(1− ē3ē1/2
2 η̄) + r−2

µ (1 + η̄ē1/2
2 )

f (η)
η2 − 1

}
,

(B0 − C0)

c66(c11 − X)
= c̄66[ᾱ; β̄]2

f̄ (−η̄)

η̄2 − 1
rµ

(b̄1 − b̄2)2

{
(1 + ηe−1/2

2 )
f̄ (−η̄)

η̄2 − 1

− 2r−1
µ (1− e3e−1/2

2 η)(1 + ē3ē1/2
2 η̄) + r−2

µ (1− η̄ē1/2
2 )

f (η)
η2 − 1

}
,

(E0 + D0)

c66(c11 − X)
= c̄66[ᾱ; β̄]2

1
b̄1 + b̄2

f̄ (η̄)
η̄2 − 1

(b1 + b2)[e1/2
2 η + ē−1/2

2 η̄],

(E0 − D0)

c66(c11 − X)
= − c̄66[ᾱ; β̄]2

1
b̄1 − b̄2

f̄ (−η̄)

η̄2 − 1
(b1 + b2)[e1/2

2 η − ē−1/2
2 η̄],

(A0 + B0)

c66(c11 − X)
= c̄66[ᾱ; β̄]2 r−1

µ ē−1/2
2 η̄

f (η)
η2 − 1

,

(49)

where

f (η) = e2
3e−1/2

2 η3 + e1η2 + [e2(e1 − 1)− e2
3]ηe−1/2

2 − 1, (50)

with e1, e2, e3, rµ are defined by (43), f̄ (η̄) is given by the first of (50) in which e1, e2 and
e3 are replaced by ē1, ē∗2 = 1/ē2 and ē3, respectively.

After dividing two sides of Eq. (48) by −rµ c̄66c66(c11 − X)[ᾱ; β̄]2/2 and taking into
account (49), this equation becomes

A(η, η̄)
sh2[ ε(b̄1 + b̄2)

2
]

(b̄1 + b̄2)2
− A(η,−η̄)

sh2[ ε(b̄1 − b̄2)

2
]

(b̄1 − b̄2)2
+ B(η, η̄)

sh[ε(b̄1 + b̄2)]

b̄1 + b̄2

− B(η,−η̄)
sh[ε(b̄1 − b̄2)]

b̄1 − b̄2
+ C(η, η̄) = 0,

(51)

where

A(η, η̄) = 2
f̄ (η̄)

1− η̄2

{
(1 + ηe−1/2

2 )
f̄ (η̄)

1− η̄2 + 2r(1− e3e−1/2
2 η)(1− ē3ē∗−1/2

2 η̄)

+ r2(1 + η̄ē∗−1/2
2 )

f (η)
1− η2

}
,

B(η, η̄) =
r f̄ (η̄)
1− η̄2 (b1 + b2)[e1/2

2 η + ē∗1/2
2 η̄],

C(η, η̄) = 2r2 ē∗1/2
2 η̄

f (η)
1− η2 ,

(52)

with r = r−1
µ .
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By comparing Eq. (51) with the secular equation derived by Sotiropolous, Eq (16)
in Ref. [14], we discover some misprints in this secular equation,. In particular

(i) In the expression for A(η, η∗) (Eq. (17) in Ref. [14]): 2r(1− c2c−1/2
3 )(1− c∗2c∗3

−1/2)

must be replaced by 2r(1− c2c−1/2
3 η)(1− c∗2c∗3

−1/2η∗).
(ii) In the expression for C(η, η∗) (Eq. (19) in Ref. [14]): c∗3

−1/2 must be replaced
by c∗3

1/2.
The same misprints have been occurred in the the secular equation (8) in Ref. [17]

obtained by Sotiropolous and Tougelidis.

3.4. Isotropic case
When the layer and the substrate are both isotropic

c11 = c22 = λ + 2µ, c12 = λ, c66 = µ, c̄11 = c̄22 = λ̄ + 2µ̄, c̄12 = λ̄, c̄66 = µ̄. (53)

With the help of (53) and Eqs. (7), (10), (26) and (33), one can see that

b1 =
√

1− γx, b2 =
√

1− x, α1 = b1, α2 = 1/b2 ,

b̄1 =
√

1− γ̄x̄, b̄2 =
√

1− x̄, ᾱ1 = −b̄1, ᾱ2 = −1/b̄2 ,
β1 = −2ρ c2

2 b1, β2 = −ρ c2
2 (2− x)/b2, γ1 = −ρ c2

2 (2− x), γ2 = −2 ρ c2
2 ,

β̄1 = 2ρ̄ c̄2
2 b̄1, β̄2 = ρ̄ c̄2

2 (2− x̄)/b̄2, γ̄1 = −ρ̄ c̄2
2 (2− x̄), γ̄2 = −2 ρ̄ c̄2

2 , (54)

where

x = c2/c2
2, c2 =

√
µ/ρ, γ = µ/(λ + 2µ),

x̄ = c2/c̄2
2, , c̄2 =

√
µ̄/ρ̄, γ̄ = µ̄/(λ̄ + 2µ̄).

(55)

Introducing (54) into (41) we obtain the explicit secular equation for the isotropic case,
namely

A0 + B0chε1chε2 + C0shε1shε2 + D0chε1shε2 + E0shε1chε2 = 0, (56)

in which A0, B0, C0, D0 and E0 are given by

A0 = 4b̄1b̄2(2− x̄)
{

2(2− x̄)(b1b2 − 1) +
[
4b1b2 − (2− x)2]r−2

µ

− (4− x̄)(2b1b2 + x− 2)r−1
µ

}
,

B0 = − A0 − b̄1b̄2 x̄2[4b1b2 − (2− x)2]r−2
µ ,

C0 = 4b̄2
1 b̄2

2

{
4b1b2(1− r−1

µ )2 −
[
2− (2− x)r−1

µ

]2
}
+ (2− x̄)2

{
(2− x̄)2(b1b2 − 1)

− 2(2− x̄)(2b1b2 + x− 2)r−1
µ +

[
4b1b2 − (2− x)2]r−2

µ

}
,

D0 = b̄1 x̄x
[
b2(2− x̄)2 − 4b1b̄2

2
]
r−1

µ , E0 = b̄2 x̄x
[
b1(2− x̄)2 − 4b2b̄2

1
]
r−1

µ ,

(57)

where rµ = µ/µ̄, rv = c2/c̄2 and x̄ = r2
vx. It is clear that for this isotropic case, the squared

dimensionless velocity of Rayleigh waves x depends on five dimensionless parameters,
say γ, γ̄, rµ, rv and ε.
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By multiplying two sides of Eq. (56) by k8/(−b̄1b̄2) we arrive immediately at the
well-known secular equation of Rayleigh waves for the isotropic case, Eq. (3.113), p.117
in Ref. [13], that is derived by Ben-Menahem & Singh and is written in other notations.

4. CONCLUSIONS

This paper introduces a technique by which the transfer matrix in explicit form of
an orthotropic layer can be easily obtained. This transfer matrix is applicable for both the
wave propagation problem and the reflection/transmission problem. The obtained trans-
fer matrix is employed to derive the explicit secular equations of Rayleigh waves propa-
gating in an orthotropic half-space coated by an orthotropic layer of arbitrary thickness.
The obtained secular equation recovers the one for the isotropic case as a special case.
The converting of the obtained secular equation to the secular equation (16) in Ref. [14]
reveals some misprints of the latter.
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