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Abstract. Reservoir optimization, is one of recent problems, which has been researched
by several methods such as Linear Programming (LP), Non-linear Programming (NLP),
Genetic Algorithm (GA), and Dynamic Programming (DP). Differential Evolution (DE), a
method in GA group, is recently applied in many fields, especially water management.
This method is an improved variant of GA to converge and reach to the optimal solution
faster than the traditional GA. It is also capable to apply for a wide range space, to a
problem with complex, discontinuous, undifferential optimal function. Furthermore, this
method does not require the gradient information of the space but easily find the global
solution by a simple algorithm. In this paper, we introduce DE, compare to LP which
was considered mathematically decades ago to prove DE’s accuracy, then apply DE to
Pleikrong, a reservoir in Vietnam, then discuss about the results.

Keywords: Differential evolution, reservoir, optimization.

1. INTRODUCTION

Water is one of few main components on the Earth that takes an important role
in our life. For an agricultural country like Vietnam, water management has effects on
many aspects such as electricity, water supplement, agriculture, and environment, . . .
Unfortunately, water is unequally distributed in space and time. To manage the water
and distribute it for different purposes, reservoirs have been built and operated.

Most of reservoirs are built by blocking the rivers by dams. This detention causes
many changes to the rivers and the downstream. That causes many changes to the hydro-
dynamic statement of the river downstream. Reservoirs mainly serve multiple purposes
such as hydro-power generation, flood control, downstream water supply, agricultural
watering, . . . The reservoirs objectives are mainly conflict, such as: water-deficient in dry
season but dam-break threatening in flood season, therefore, it tends to store up the water
in dry season and discharge the water in flood season. Also, each reservoir has different
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hydro-meteorological conditions, region water requirements and set of operation rules.
How to optimize the objectives of a reservoir is a question that is still under considera-
tion because of the large number of variables, the non-linearity of system dynamics, the
stochastic of the inflows and many uncertainly parameters depended on the particular
reservoir. That is the reason why making optimal operation decisions is challengeable [1].

An optimization problem needs to find a maximum or minimum of some object
within given constraints. It can be described in the form

max f (x) = f (x1, x2, . . . , xn) , x ∈ Rn (1)

where f (x) is an objective function.
Inequality and equality constraints are

gj (x) ≥ 0, hk (x) = 0, j = 1, 2, . . . , J; k = 1, 2, . . . , K. (2)

In optimal reservoir problem, the objective functions are incorporate measurable
such as efficiency (i.e., maximizing current and future discounted welfare), survivabil-
ity (i.e., assuring future welfare exceeds minimum subsistence levels), and sustainability
(i.e., maximizing cumulative improvement overtime) [2]. The constraints are the coef-
ficients that belonged to the hydrology and operation structure of the reservoir such as
limits on reservoir releases, storage in ranges of dead storage and power plant opera-
tion. Because the variables of the reservoir problem are nonlinear, non-differentiable,
and non-continuous; the numbers of control and decision variables and constraints are
large, therefore, this is a sophisticate problem. In the world, numbers of mathematical
programming techniques have been researched and developed, such as LP, NLP, DP and
GA, to solve this problem. Recently, there are also some applications of GA [3, 4]; how-
ever, this is the first time DE is applied in reservoir optimization in Vietnam.

2. METHOD OF DIFFERENTIAL EVOLUTION

2.1. Outline of differential evolution
There are two types of reservoir optimization: long-term and short-term range op-

timization. The long-term optimization is for planning and the time step of the method
can be yearly or monthly; while short-term type is for real management and the time step
in this case mainly are daily or hourly [5]. DP often uses long time steps, while DE and
LP are more flexible in time steps. We now focus on DE which is a method belonging to
GAs group.

Genetic Algorithm is a method that was based on Darwin’s theory of natural evo-
lution. Holland (1975) first laid down the method Genetic Algorithm by using the idea
of the principles of natural selection of biological organisms. In a genetic, a population of
abstract representations of candidate solutions to an optimization problem are stochas-
tically selected, recombined, mutated and then either eliminated or retained based on
their relative fitness [6]. The approach has been successfully applied to a wide variety of
problems [7]. That shows the efficiencies of Genetic Algorithm in optimization aspect.

To surpass the traditional methods, GAs must differ in some very fundamental
ways. In [8], Goldberg identifies the following as the significant differences between GAs
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and more traditional optimization methods, such as: (1) work with a coding of the pa-
rameter set, not the parameter themselves; (2) search from a population of points, not
a single point; (3) use objective function information, not derivatives or other auxiliary
knowledge; (4) use probabilistic transition rules, not deterministic rules. Since then, GAs
have been; developed into a powerful technique for identifying optimal solutions to com-
plex problems.

However, traditional GAs use low mutation rates and fixed step sizes that cause
trouble with problem having interdependent relationships among the decision variables
[9].

In 1996, Price and Storn introduced a method named Differential Evolution to deal
with nonlinear and non-differentiable continuous space minimal problem. Differential
Evolution is a direct search in the family of GAs which reaches to a robustness in opti-
mization and faster convergence to a given problem. It is also easy to use and requires
only few control variables. It differs from other GAs in mutation and recombination
phase. DE uses weighted differences between solution vectors to perturb the population,
not a random quality as other GAs [10].

DE initial the population NP in N dimensions for the steps or generations dis-
tributed in the searching space

Xi = (xi1, . . . , xin)
T i = 1, . . . , NP (3)

Mutation is a stepping-stone that creates new vector from the given ones. In the

step G or generation G, a vector V(G+1)
i =

(
v(G+1)

i1 , v(G+1)
i2 , . . . , v(G+1)

in

)T
is created from

each individual vector Xi(G) by adding a weighted differences between the given vectors
[10].

There are some of mutation ways such as [9]
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(4)

where X(G)

best is the best individual of G. F > 0 is a real parameter, called mutant con-
stant, which controls the difference between two individuals, used to avoids the slow
searching. r1, r2, r3, r4, r5 are random integers chosen from 1 to NP.

After mutant step, we will consider where choose new vectors for the next step
or keep the old ones. This is called crossover. In this crossover, we randomly choose a
number

rnbr(i) ∈ {1, 2, . . . , n} (5)
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for each vector and create a new vector

U(G+1)
i =

(
u(G+1)

i1 , u(G+1)
i2 , . . . , u(G+1)

in

)T
(6)

while

u(G+1)
ij =

{
v(G+1)

ij if [randb(j) ≤ CR] or [j = rnbr(i)]

x(G)
ij if [randb(j) > CR] or [j 6= rnbr(i)]

(7)

where j = 1, 2, . . . , n; randb(j) is randomly chosen in [0, 1] ; CR is cross-over constant
which is chosen in [0, 1] .

Now, comparing new vectors to the old ones through the objective function, the
vectors for the next step are chosen. Each vector that passes into the next generation is
already compared and is a better one. The calculation steps will be repeated until the
standard of the problem has reached [10].

u(G+1)
ij =

{
v(G+1)

ij if [randb(j) ≤ CR] or [j = rnbr(i)]

x(G)
ij if [randb(j) > CR] or [j 6= rnbr(i)]

(8)

DE is wide-ranged used not only in reservoirs optimal problem [9, 11] but also in
many fields and optimal problems [12–14].

In reservoir optimal problem, NP initial vector Xi could be the releases of NP days
in calculating, the objective function could be the maximum electricity production of
the plant in NP days and the constrains could be the limits on reservoir releases which
based on the construction of the plant, minimum level for death storage and power plant
operation, . . . After calculating, we could find out the optimal operation to satisfy the
objective function.

However, there is no mathematical proof of optimality by GA methods generally;
and by DE methods particularly. DE is like all other heuristic programming methods that
are based on rules-of-thumb, experience [2]. DE is said to be a method that “cannot guar-
antee termination to even local optimal solutions, but they are often capable of achieving
global optimal solutions to problems where traditional algorithmic methods would fail
to converge or get stuck in local optima” [2].

2.2. Application of differential evolution
We now use LP, a traditional optimal method that is well-proven to prove the accu-

racy and effectiveness of DE by applying in to the same object with the same conditions.
While reservoir optimal problems are mainly large-scale with long time horizon,

LP is one of the most efficient methods are critically applied. LP requires all objective
functions and constraints are linear or linearizable. An efficient method for moving LP is
simplex one. If the solution of an optimization problem exists, then this simplex method
can find it in the final steps [15].

2.2.1. Comparing DE to LP
We now apply both DE and LP into one object that is Pleirong plant in Vietnam.
Pleikrong hydropower plant was built in Kontum Province, Highland of Vietnam,

at the upstream of Sesan river (Fig. 1). Pleikrong reservoir is the biggest one on the Sesan
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cascade and its purposes are: storing water for the whole Sesan cascade and producing
electricity. The management of Pleikrong hydropower reservoir has a significant affect
to other reservoirs in the cascade. In this paper, the objective function is to maximize the
electricity production of Pleikrong plant.

Characteristics of reservoirs of 

Sesan River 

Sesan Cascade Hydroelectric Diagram 

Explaination 
Factoríes 

Dams 

Rivers 

Reservoirs 

Roads 

Upper Kon Tum 

Plant

Fig. 1. The Sesan cascade

We consider an optimal problem in electricity production of Pleikrong plant in
dry season, which starts at the beginning of December and ends in the next June. The
reservoir management is followed the operation rules in the decision No. 1182 QD-TTg
of the Government of Vietnam signed in July 17, 2014. In details: operation period in dry
season is 10 day, from 1st December to next 15th February, Pleikrong reservoir needs to
store the water as much as possible. From 16th Feb to 30th Jun, the main task of Pleikrong
reservoir is producing electricity. To 30th Jun, the water level in the reservoir has to be at
death level to prepare for the flood control in Sesan basin.

The object function of the optimal reservoir management problem that we consider
is finding the maximum of electricity production from 11st February to 30th Jun (140
days). So, the problem is settled as below:

Finding the Qi - average (in 10 days) release at time period i, i = 1, 2, . . . , 14, to get
the maximum of electricity production.
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The electricity production of Pleikrong plant at time period i of 10 days is calcu-
lated by the following formula [16]

Ei = 9.8 ∗ hi ∗Qi ∗ k ∗ 24 ∗ 10/1000 (MWh), (9)

where hi - water height at time period i, Qi - release at time period i, k - overall generation
efficiency.

Then electricity production E is calculated as

E = E1 + E2 + . . . + E14. (10)

In formula (9), water height hi is nonlinearly dependent on the average release Qi
and the average inflow Ui at time period i. Those inflows in the year 2010 are shown in
the Tab. 1. The data that is used in this paper was provided by the team of Institute of
Mechanics of VAST in project of building the reservoir operation for Sesan cascade in dry
season (under contract N 01/2011/QTVH - SESAN on June 02, 2011).

– Using LP
To apply LP to the problem of reservoir regulation, we need all the data, functions

and constraints in linear forms. Therefore, the water height hi in (2) is approximately
transferred into constant (Tab. 1). The difference between the results received by this
approximation and the real monthly data of the Pleikrong hydropower plant in 2010 is
not much (Tab. 2).

Table 1. Monthly electricity production (MWh) in the 2010 year

No period Time of period Inflow (m3/s) Approx. height (m)
1 11/Feb - 20/Feb 47.73 52.00
2 21/Feb - 02/Mar 53.35 49.79
3 03/Mar - 12/Mar 23.79 47.58
4 13/Mar - 22/Mar 51.80 45.37
5 23/Mar - 01/Apr 31.98 43.16
6 02/Apr - 11/Apr 25.26 40.95
7 12/Apr - 21/Apr 44.56 38.74
8 22/Apr - 01/May 41.18 36.53
9 02/May - 11/May 14.54 34.31

10 12/May - 21/May 23.54 32.10
11 22/May - 31/May 0.09 30.00
12 01/Jun - 10/Jun 17.15 27.68
13 11/Jun - 20/Jun 44.76 25.47
14 21/Jun - 30/Jun 36.48 23.26

Using available LP software (for example: LP in MatLab; SIMPLEX PROCEDURE
written by J. Morris, Naval Surface Weapons Center Dahlgren, Virginia, USA; Online
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Table 2. Monthly electricity production (MWh) in the 2010 year

Calculation data Real data
March 31031 34883
April 43717 47932
May 29064 32354
June 8490 8027
Sum 112303 123198

software PHPSimplex, www.phpsimplex.com) [17], we get the following optimal releases
as shown in Tab. 3.

Table 3. Optimal releases by LP

No period Time of period Optimal releases (m3/s) by LP

1 11/Feb - 20/Feb 330.00

2 21/Feb - 02/Mar 330.00

3 03/Mar - 12/Mar 330.00

4 13/Mar - 22/Mar 224.14

5 23/Mar - 01/Apr 31.98

6 02/Apr - 11/Apr 25.26

7 12/Apr - 21/Apr 44.56

8 22/Apr - 01/May 41.18

9 02/May - 11/May 14.54

10 12/May - 21/May 23.54

11 22/May - 31/May 0.09

12 01/Jun - 10/Jun 17.15

13 11/Jun - 20/Jun 44.76

14 21/Jun - 30/Jun 36.48

With the maximum electrical production is 143107.20 MWh.

– Using linear DE
Recently, there is no DE software for reservoir regulations. We use the program

DE Fortran90, written by Dr. Feng-Sheng Wang Department of Chemical Engineering,
National Chung Cheng University, Chia-Yi 621, Taiwan [18] and develop it for reservoir
regulation (DE Pleik01).

For verification of DE Pleik01 we use the Eq. (9) with constants hi in the Tab. 1, i.e.
we consider the problem of optimal releases Qi with linear objective function. DE Pleik01

www.phpsimplex.com
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give the similar result in the Tab. 3. So, we can use DE Pleik01 for optimal reservoir
regulation.

Table 4. Optimal releases by DE for linear case

No period Time of period Optimal releases (m3/s) by DE

1 11/Feb - 20/Feb 330.00

2 21/Feb - 02/Mar 330.00

3 03/Mar - 12/Mar 330.00

4 13/Mar - 22/Mar 224.13

5 23/Mar - 01/Apr 31.98

6 02/Apr - 11/Apr 25.26

7 12/Apr - 21/Apr 44.56

8 22/Apr - 01/May 41.18

9 02/May - 11/May 14.54

10 12/May - 21/May 23.54

11 22/May - 31/May 0.09

12 01/Jun - 10/Jun 17.15

13 11/Jun - 20/Jun 44.76

14 21/Jun - 30/Jun 36.48

With the maximum electric production is 143107.71 MWh.
The results in Tab. 2 and Tab. 3 show that DE is an accurate method and its results

are effective comparing to a well-proven method like LP.

2.2.2. Applying nonlinear DE to Pleikrong optimal regulation
The relationship between water levels and storage volumes is not linear in the re-

ality. As shown in (Fig. 2), the water height hi is a nonlinear function of the release Qi
and the inflow Ui. We consider now the problem of optimal releases Qi with nonlinear
objective function.

Applying DE Pleik01 with the nonlinear water height function hi, we get the other
result of optimal releases as shown in Tab. 5. With the maximum electric production
in this case is 141109.71 MWh, which is much higher than the real production is about
134058.3 MWh.

Results for application of DE in linear (Tab. 3) and nonlinear (Tab. 5) cases are
different. The biggest releases in Tab. 3 are in the beginning, but the biggest releases in
Tab. 5 are in the end of the dry season. This difference is because the relation between
water heights and the releases is nonlinear for real. We can use this nonlinear relation
into nonlinear DE right away. However, this relation must be linearized to qualify the
requirement of LP. That causes the differences between results of Tab. 3 and Tab. 5.
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Fig. 2. Relationship between water levels Z and storage volumes W of the Pleikrong reservoir

Table 5. Optimal releases by DE for nonlinear case

No period Time of period Optimal releases (m3/s) by DE

1 11/Feb - 20/Feb 0.0

2 21/Feb - 02/Mar 40.5

3 03/Mar - 12/Mar 23.8

4 13/Mar - 22/Mar 51.80

5 23/Mar - 01/Apr 31.98

6 02/Apr - 11/Apr 25.26

7 12/Apr - 21/Apr 44.56

8 22/Apr - 01/May 41.18

9 02/May - 11/May 14.54

10 12/May - 21/May 102.7

11 22/May - 31/May 193.5

12 01/Jun - 10/Jun 263.8

13 11/Jun - 20/Jun 330.0

14 21/Jun - 30/Jun 330.0

3. CONCLUSION

In many methods, DE is chosen in this paper to apply to a specific reservoir optimal
problem because DE is a direct search method that can be linked directly with hydrologic
and water quality simulation models without requiring simplifying assumption in calcu-
lation of derivatives [2]. DE is also a good tool that has been widely used and given good
results. We use Linear Programming, which is efficient to solve large-scale problem, no
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need of the initial solutions, well-developed duality theory for sensitively analysis, con-
vergence to global solutions and easily setup and use [2], as a measurement to prove the
accuracy of Differential Evolution and show that DE is a promise method while it is still
unproven mathematically. We are also using DE to other reservoirs in Sesan Cascade and
for other years, and these results will be shown in another paper.
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