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Abstract. In this paper, an analytic homogenization model in traction and flexion for the
double corrugated cardboard plates is presented. The proposed analytical homogeniza-
tion model allows modelling the 3D double corrugated cardboard with a 2D homogenized
plate. This model is essentially based on the theory of stratification and then improved
by using the theory of sandwich. This model was validated by comparing the results of
Abaqus-3D and H-2D model using ”user’s subroutine” ”UGENS”. The homogenization
model can be used not only for corrugated cardboard plates, but also for naval and aero-
nautic composite structures.

Keywords: Analytical homogenization, corrugated cardboard, orthotropic plates.

1. INTRODUCTION

Nowadays, the corrugated cardboard is widely used in the packaging industry,
such as corrugated cardboard boxes, insert cardboard sheet in pallet systems. It is essen-
tial to predict the mechanical behavior of these systems in order to use such materials
effectively. The numerical modeling of this kind of orthotropic composite plates by shell
elements is too tedious and time consuming. Many homogenization models were ob-
tained by analytical, numerical and experimental methods [1–5]. By using some FE mod-
els and commercial FE software, the mechanical behaviors of corrugated cardboard were
studied by other authors [6, 7], but it just limited with the single corrugated cardboard.

The corrugated cardboard is produced by a converting process in which three or
more layers are laminated together. The flat layers are called liners and the corrugated
cores are referred to as flutes (Fig. 1). Corrugated cardboard is one of the most used
packaging materials to make boxes or interlayers for goods transport. The manufactur-
ing process gives three characteristic directions: the machine direction (MD), the cross
direction (CD), and the thickness direction (ZD).
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Fig. 1. Homogenization model

This paper presents an efficient homogenization model for the mechanical behav-
ior of a corrugated cardboard composed of three or five layers (single or double flutes).
The homogenization is carried out by calculating analytically the global rigidities of the
corrugated cardboard and then this 3D structure is replaced by an equivalent homoge-
nized 2D plate. The simulations in traction and flexion of Abaqus-3D and H-2D model
of double corrugated cardboard will be studied in this article. This 2D homogenization
model is very fast and has close results comparing to the 3D model using the Abaqus
shell elements.

2. RECALL OF MINDLIN’S THEORY AND THEORY OF LAMINATED PLATES

For a model composite plate, the Mindlin theory is often used. It is assumed that
a right segment and perpendicular to the mean surface remains straight but not perpen-
dicular to the medium surface after deformation. This assumption allows to consider the
transverse shear deformations. The membrane forces, bending moments and torsional
and transverse shear forces are obtained by integration of the constraints on the thick-
ness
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If we consider a composite sheet consisting of several layers, the resulting forces
defined above may be combined in layersNx
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After the integration along the thickness, we obtain the overall stiffness matrix that
links the generalized deformations with resultant forces
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The law of behavior above can be written in matrix form {N}
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where {N}, {T} and {M} are the internal forces and moments; [A], [D], [B] and [F] are
the stiffness matrices related to the membrane forces, the bending-torsion moments, the
bending-torsion-membrane coupling effects and the transverse shear forces respectively;
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{ε} is the membrane strain vector, {κ} is the curvature vector and {γs} is the transverse
shear strain vector.

3. CORRUGATED CARDBOARD HOMOGENIZED MODEL

A 3D geometrical modeling of the liners and the flutes of the corrugated cardboard
is a very tedious and time-consuming task. In our homogenization model, a corrugated
cardboard panel is replaced by a 2D plate. Instead of using a local constitutive law (relat-
ing the strains to the stresses) at each material point, the homogenization leads to global
rigidities (relating the generalized strains to the resultant forces) for the equivalent ho-
mogeneous plate. The corrugated cardboard is more complex than a laminated plate
because of the fluting cores and the cavities between the three liners. Consequently some
global effective stiffnesses in the matrix (9) obtained by the theory of laminated plates
should be modified [5, 8].

Consider a double corrugated cardboard and using a, b, c, d, and e to represent the
lower liner, lower flute, intermediate liner, upper flute and the upper liner (Fig. 2). The
geometry of each flute is defined by the following equations
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Fig. 2. Geometry of a double corrugated cardboard

To homogenize a panel corrugated double wall, we consider a representative vol-
ume element (RVE). This volume must be sufficiently small relative to the dimensions of
the entire panel. Once the overall stiffness of each slice are obtained by integrating the
thickness, the homogenization along x is performed to calculate the average stiffness of
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all tranches over a period
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We note that, in Eq. (11), when the periods Pd and Pb of corrugated layers are

different, it is necessary to take an RVE having the length P that is the multiple of these
periods.

3.1. Traction and bending stiffnesses related to Nx, Mx, Ny, My

Since the vertical position (z) of a groove portion (ds) is a function of x and a
thickness over its vertical section is a function of the angle of inclination of the groove θx
(Fig. 2), Eq. (8) becomes
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For each of the two grooves, the homogenization on their period (along x) should
be calculated numerically according to Eq. (11).
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3.2. Implementation of the homogenized model in an FE analysis
For this problem, the corrugated cardboard is modelled by shell elements, the inter-

nal forces and moments are calculated incrementally. Their increments dN and dM have
the following relationship with the increments of the membrane strains and bending-
torsion curvature [
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]
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where the stiffness matrix [H] is determined by our homogenization model which is im-
plemented into ABAQUS by programming a user subroutine UGENS.

In ABAQUS, the 4-nodal shell element S4R has 6 degrees of freedom per node (3
displacements and 3 rotations). In the UGENS subroutine, the generalized forces and
strains are passed in using the arrays FORCE (6) and STRAN (6), and will be updated at
the end of the subroutine; the known generalized strain and curvature increments {dε}
and {dκ} are passed in using the array DSTRAN (6). The main purpose of the UGENS is
to calculate the stiffness matrix [H] in Eq. (13) which is stored in the array DDNDDE (6,
6) at the end of the subroutine. This array will be used by ABAQUS to define the element
stiffness matrix in the FE solution.

4. RESULTS AND DISCUSSION

To validate our H-model, we first discretize the five layers of corrugated cardboard
by shell elements S4R of Abaqus to obtain the model Abaqus-3D; Then, we discretize
the middle surface of corrugated cardboard by shell elements S4R of Abaqus combined
with our H-model (using “user’s subroutine” ”UGENS”) to obtain H-2D model. The
confrontation of the results allow us to evaluate the efficiency and accuracy of our ho-
mogenization model.

Fig. 3. Geometry of the CD section of corrugated cardboard

The calculations and comparisons are made on a corrugated panel having CD sec-
tion illustrated in Fig. 3. Geometric data are: period (or step) and height of the lower
groove Pb = 9 mm and hb = 5.2 mm, those of the upper groove Pd = 6 mm and
hd = 2.9 mm, thicknesses ta = tc = te = 0.25 mm, tb = td = 0.26 mm. The properties
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of materials are given in Tab. 1 [9]. The rigidities of 2D equivalent plate are calculated as
shown in Tab. 2.

Table 1. Material properties of the five layers of the corrugated cardboard

Layers
E1 E2 E3 G12 G13 G23

ν12 ν13 ν23
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

a 8250 2900 2900 1890 7 70 0.43 0.01 0.01

b, d 4500 4500 3000 1500 3.5 35 0.40 0.01 0.01

c, e 8180 3120 3120 1950 7 70 0.43 0.01 0.01

Table 2. Rigidities of the equivalent plate

Rigidities
A11 A12 A22 B11 B12 B22 D11 D12 D22

(N/mm) (N/mm) (N/mm) (N) (N) (N) (N.mm) (N.mm) (N.mm)

Values 6606.2 1055.1 5989.8 2507.1 526.1 2914.5 75214.1 11870.5 49672.4

We use a corrugated panel having length L = 162 mm and width B = 162 mm.
This panel is tested under different types of loading: traction and bending. For the simu-
lation of the homogenized plate using our H-2D model, the middle surface is discretized
into 2916 quadrilateral elements S4R and nodes 3025. But for the Abaqus simulation-3D,
52116 quadrilateral elements S4R and 48293 nodes are needed. Indeed, to fully describe
the geometry of the groove, it takes at least 16 elements over a period of groove.

In both types of simulations (Abaqus-3D model and H-2D model), a rigid plate is
bonded to the MD or CD section at the right end of the cardboard panel to better apply
forces or moments (Fig. 4, 5). The calculations by our H-2D model are very fast while
calculations by Abaqus-3D are much longer. The comparisons of results obtained by the
two models and the percentages of error in H-2D model compared to Abaqus-3D results
for the traction and bending are presented in Tab. 3, we note that the numerical results
given by the two models are very close.

Fig. 4. Simulation of Abaqus-3D and H-model in traction for the MD section
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Fig. 5. Simulation of Abaqus-3D and H-model in bending for the CD section

Table 3. Comparison between Abaqus-3D and 2D-H-model for plate in traction and bending

Abaqus-3D H-2D-Model Error (%)

Traction
MD

Displacement U1 (mm) 0.3110 0.3118 +0.26

F = 2000 N
CPU time (s) 48.7 1 48.7 times

CD
Displacement U2 (mm) 0.3433 0.3455 +0.64

CPU time (s) 47.2 1 47.2 times

Bending
MD

Displacement U3 (mm) 11.21 11.14 −0.62

M = 10 KN.mm
CPU time (s) 39.7 1 39.7 times

CD
Displacement U3 (mm) 17.34 17.14 −1.15

CPU time (s) 39.1 1 39.1 times

5. CONCLUSION

In this article, we have proposed an analytic homogenization model for the traction
and flexion problem of double corrugated core cardboards. The comparison of the results
obtained by the analytic formulas, by the Abaqus 3D simulations and by the Abaqus-
Ugens 2D simulations has proved the validation of the present traction and flexion ho-
mogenization model. The present H-model allows us to largely reduce not only the time
for the geometry creation and FE calculation, but also the computational hardware re-
quirements for the large-scale numerical modelling of packaging systems composed of
double corrugated core cardboards.
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