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Abstract. In this paper, the secular equation of Rayleigh surface waves propagating in an
orthotropic layered half-space is derived by the matrix method. All the layers and the half-
space are assumed to have identical principle axes. The explicit form of the matrizant for
each layer is obtained by the Sylvester’s theorem. The derived secular equation takes only
real values and depends only on the dimensionless variables and dimensionless material
parameters. Hence, it is convenient in numerical calculation.
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1. INTRODUCTION

The study of Rayleigh surface waves propagation in layered half-space is of consid-
erable interest in the field of seismology since the Earth’s surface could be considered to
consist of several layers overlying a half-space. The first systematic and efficient method
to find the secular equation is the propagator matrix method proposed by Thomson [1]
and Haskell [2]. This method expresses the relation between the displacements and the
stresses at two faces of a layer by a matrix called the layer propagator matrix. The prod-
uct of these matrices is used to find relation of the displacements and stresses at the free
surface and at the top of the half-space to formulate the secular equation using boundary
conditions. This method has been modified to be more efficient and stable such as in
Knopoff [3], Dunkin [4], Kennett [5] and Chen [6] and has been used widely recently.

For the homogeneous isotropic layered half-space, the layer propagator matrix has
an explicit form because the vertical wave numbers in the layer are simple and always
either real or pure imaginary. The situation become more complicated for the homo-
geneous anisotropic layers in which the vertical wave number could be complex. This
make the propagator matrix could be complex leading to difficulties in numerical cal-
culation and it is also not easy to have the layer propagator matrix in explicit form (see
Crampin [7], Crampin and Taylor [8]). This also makes difficulties in handling the decay
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condition in the half-space. For the orthotropic layers, an explicit expression of the trans-
fer matrix is given in Solyanik [9] and its more convenient in numerical calculation form
is then given in Rokhlin and Wang [10]. However, the elements of these transfer matrices
are not always real.

In this paper, a more advanced formulation of the Thomson-Haskell method is
used to obtain the matrizant of a layer, which is analogous to the layer propagator ma-
trix, first. It is written in explicit form by the use of Sylvester’s theorem. For the purpose
of finding the secular equation, an equivalent dimensionless and real form of the ma-
trizant is derived. Then, the difficulty in the decay condition will be overcome by using
the Vieta’s formulas for the propagation equation of the half-space. Finally, the secu-
lar equation in convenient form for numerical calculation is obtained and an numerical
example in finding the dispersive curves of Rayleigh surface waves is presented.

2. FORMULATION OF THE PROBLEM

Consider a stack of n homogeneous orthotropic layers overlying on a homoge-
neous orthotropic half-space. By h(k), ρ(k), c(k)ij (i, j = 1, 6) we denote the thickness, the
density, and the material constants of the kth layer (k = 0, n). The underlying half-space
is labeled as the zeroth layer (k = 0). All the layers are assumed to have identical princi-
pal axes and the waves propagates along x1-axis which is one of the three principal axes
(see Fig. 1).
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Fig. 1. Model of n orthotropic layers overlying an orthotropic half-space.
The half-space is labeled as layer (0)

Consider plane waves propagating in a layer whose material parameters are de-
noted by (ρ, cij) for the moment such that

u1 = −iy2 (x2; ω, k) ei(ωt−kx1),

u2 = y1 (x2; ω, k) ei(ωt−kx1),
u3 = 0,

(1)
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where ω, k, t are the angular frequency, horizontal wave number and the time, respec-
tively.

Since the layer is made of orthotropic elastic material, then the strain-stress rela-
tions are (see Ting [11])

σ11 = c11u1,1 + c12u2,2,
σ22 = c12u1,1 + c22u2,2,

σ12 = c66 (u1,2 + u2,1) ,
(2)

where σij are the stresses of the layer, commas indicate differentiation with respect to
spatial variable xk. In the absence of body forces, equations of motion are

σ11,1 + σ12,2 = ρü1,
σ12,1 + σ22,2 = ρü2.

(3)

Let
σ22 = y3ei(ωt−kx1),

σ12 = −iy4ei(ωt−kx1),
(4)

then substituting (1) into (2) we obtain

y3 = c22
dy1

dx2
− kc12y2,

y4 = c66

(
dy1

dx2
+ ky1

)
,

(5)

and

k
(

c12
dy1

dx2
− kc11y2

)
+

dy4

dx2
= −ρω2y2,

− ky4 +
dy3

dx2
= −ρω2y1.

(6)

Eqs. (5) and (6) can be written in the matrix form as follows

dy
dx2

= Uy, (7)

where y = [y1, y2, y3, y4]
T (the symbol “T” indicates the transpose) and

U =



0 k
c12

c22

1
c22

0

−k 0 0
1

c66
−ρω2 0 0 k

0 k2
(

c11 −
c2

12
c22

)
− ρω2 −k

c12

c22
0


. (8)

The propagation equation of the layer, which is the characteristic equation deter-
mining the eigenvalues λ = kb of the matrix U, is

c22c66b4 +
[
(c12 + c66)

2 + c22 (X− c11) + c66 (X− c66)
]

b2 + (c11 − X) (c66 − X) = 0, (9)
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where X = ρc2. This is a quadratic equation in b2 with solution b2
1 and b2

2 satisfying
Vieta’s formulas

b2
1 + b2

2 = − (c12 + c66)2 + c22(X− c11) + c66(X− c66)

c22c66
= S,

b2
1 · b2

2 =
(c11 − X)(c66 − X)

c22c66
= P.

(10)

Eq. (9) has four roots, namely ±
√

b2
1 and ±

√
b2

2. When S2 − 4P > 0 the four roots are ei-
ther real or pure imaginary. Otherwise, they are complex conjugate in pairs and note that

b2
1 = (b2

2)
∗, (11)

in which the asterisk denotes the complex conjugate. The eigenvector of matrix U corre-
sponding to eigenvalue λ = kb is

v =


b (c12 + c66)

b2c22 − c66 + X
−k
[
c12X−

(
b2c22 + c12

)
c66
]

kc66b
(
b2c22 + c12 + X

)
 . (12)

Consider the Rayleigh surface waves propagating in layered half-space (Fig. 1)
along the x1-axis. The governing equations of the motion of Rayleigh waves in this
model are

dy
dx2

= U(x2)y, (13)

in which the coefficient matrix is a function of x2 defined as

U (x2) = U(i),
(

x2 ∈
[

x(i−1)
2 , x(i)2

]
, i = 1, n

)
,

U (x2) = U(0), (x2 ∈ [−∞, 0]) ,
(14)

where U(i) is of form (8) with all material parameters are replaced by those of ith layer.
The boundary conditions are the traction free at the top surface, i.e.

y3 (H; ω, k) = y4 (H; ω, k) = 0, (15)

where H = ∑ hi is the total thickness of the layers, and the continuity of the displace-
ments and stresses at each interface, i.e.

y(i)(x(i)2 ; ω, k) = y(i+1)(x(i)2 ; ω, k), (i = 0, n− 1) (16)

where y(i)(x2; ω, k) = y(x2; ω, k) at x2 = [x(i−1)
2 , x(i)2 ], (i = 1, n) and the decay condition

that
y (x2; ω, k)→ 0 as x2 → −∞. (17)

The differential equations (13) along with the boundary conditions (15), (16) and
(17) will be used to determine the secular equation of the Rayleigh surface waves.
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3. THE MATRIX METHOD

Consider the differential equations (13). A formal solution to this equation is

y (x2) = ΩΩΩ
(
x2, x′2

)
y
(
x′2
)

, (18)

where y (x′2) is the given initial value of y at x2 = x′2 and ΩΩΩ (x2, x′2) is called the matrizant
of U. When U is a constant matrix, the matrizant is (see Frazer et. al [12])

ΩΩΩ
(

x2, x′2
)
= exp

[(
x2 − x′2

)
U
]

. (19)

Let n be the rank of U and λi (i = 1, 2, . . . , n) be the eigenvalues of U, by Sylvester’s
theorem (e.g. see Frazer et. al [12]), we have

E (h) = exp (hU) =
n

∑
i=1

eλih ∏
j 6=i

λjI−U
λj − λi

. (20)

Applying this result to our layered model, for example to the 1st layer, we have

y
(

x(1)2

)
= E(1) (h1) y

(
x(0)2

)
= E(1) (h1) y (0) , (21)

where E(1) (h1) = exp
(

h1U(1)
)

computed from (20) for matrix U(1). Using this procedure
for other layers, we have

y (H) = y
(

x(n)2

)
= E(n) (hn) y

(
x(n−1)

2

)
= E(n) (hn)E(n−1) (hn−1) y

(
x(n−2)

2

)
= · · · =

= E(n) (hn)E(n−1) (hn−1) . . . E(2) (h2)E(1) (h1) y (0) ,

(22)

where E(i) (hi) = exp
(

hiU(i)
)

, (i = 1, n).
To obtain y(0), we consider the system of waves propagating in the half-space. The

wave system in the half-space is controlled by Eq. (7) with U replaced by U(0). In general,
Eq. (7) has four fundamental solutions of form

y(0)
j (x2; ω, k) = v(0)

j exp
(

λ
(0)
j x2

)
, (j = 1, 4) (23)

where λ
(0)
j are the eigenvalues of matrix U(0) determined from (9) and v(0)

j are the cor-
responding eigenvectors computed from (12). For the sake of simplicity, hereafter we
denote y(i) (x2; ω, k) by y(i) (x2).

Due to the decay condition, there are only two solutions in the half-space with the
eigenvalue having positive real part. These two eigenvalues are kb(0)1 , kb(0)2 and deter-
mined from (9). Hence, the displacement field in the half-space is

y(0) (x2) = C1v(0)
1 ekb(0)1 x2 + C2v(0)

2 ekb(0)2 x2 , (24)

where C1 and C2 are constant. At x2 = 0, we have

y (0) = y(0) (0) = C1v(0)
1 + C2v(0)

2 . (25)
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Denote

E (H) = E(n) (hn)E(n−1) (hn−1) . . . E(2) (h2)E(1) (h1) , (26)

we have from Eq. (22) that

y (H) = C1E (H) v(0)
1 + C3E (H) v(0)

2 . (27)

The traction free condition (15) gives

y3 (H) = 0,

y4 (H) = 0.
(28)

These are two homogeneous equations of C1 and C2. Hence, to obtain the nontrivial
solution, we must have

∆ (ω, k) =
[

E3i (H) v(0)
1 (i)

] [
E4i (H) v(0)

2 (i)
]
−
[

E3i (H) v(0)
2 (i)

] [
E4i (H) v(0)

1 (i)
]
= 0,

(29)
in which the Einstein summation for i from 1 to 4 is applied. This is the secular equation
of Rayleigh waves and it could be used to obtain the dispersion curves numerically such
as by some numerical integral method (e.g see Takeuchi and Saito [13]). The numerical
approach using Eq. (29) has some intrinsic difficulties but a problem could be arisen here
is how to choose two out of four solutions in the half-space satisfying the decay condi-
tion because the eigenvalues of the propagation equation of the half-space are in general
complex. In the following, the secular equation will be written in a new form to avoid
the above difficulties.

Eq. (29) could be expressed as

∆ (ω, k) = M ·V = 0, (30)

where M and V are two vectors of six components defined as

V =



v(0)
1 (1) v(0)

2 (2)− v(0)
2 (1) v(0)

1 (2)
v(0)

1 (1) v(0)
2 (3)− v(0)

2 (1) v(0)
1 (3)

v(0)
1 (1) v(0)

2 (4)− v(0)
2 (1) v(0)

1 (4)
v(0)

1 (2) v(0)
2 (3)− v(0)

2 (2) v(0)
1 (3)

v(0)
1 (2) v(0)

2 (4)− v(0)
2 (2) v(0)

1 (4)
v(0)

1 (3) v(0)
2 (4)− v(0)

2 (3) v(0)
1 (4)


and M =


E31(H)E42(H)− E41(H)E32(H)
E31(H)E43(H)− E41(H)E33(H)
E31(H)E44(H)− E41(H)E34(H)
E32(H)E43(H)− E42(H)E33(H)
E32(H)E44(H)− E42(H)E34(H)
E33(H)E44(H)− E43(H)E34(H)

 .

(31)
Note that b(0)1 =

(
b(0)2

)∗
. Therefore, v(0)

1 =
(

v(0)
2

)∗
and we can write vector V as

V =
(

b(0)1 − b(0)2

)
k
(

c(0)66

)3
[

V̄1

kc(0)66

, V̄2, V̄3, V̄4, V̄5, kc(0)66 V̄6

]T

, (32)
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where V̄ = [V̄1, V̄2, V̄3, V̄4, V̄5, V̄6]
T is a dimensionless vector whose components are

V̄1 =
(

e(0)3 + 1
) [
−e(0)2

√
P(0) − 1 + x(0)

]
,

V̄2 = −
(

e(0)3 + 1
) (

e(0)3 x(0) + e(0)2

√
P(0) − e(0)3

)
,

V̄3 = −
(

e(0)3 + 1
)

e(0)2

√
P(0)

√
S(0) + 2

√
P(0),

V̄4 = −
(

e(0)3 + 1
)

e(0)2

(
x(0) − 1

)√
S(0) + 2

√
P(0),

V̄5 = −
(

e(0)2

)2
P(0) + e(0)2

(
1− x(0)

)
S(0) + e(0)2

(
e(0)3 + 1

)√
P(0)+

+
(

e(0)3 + x(0)
) (

1− x(0)
)

,

V̄6 = e(0)2 e(0)3

(
x(0) − 1

)
S(0) −

(
e(0)2

)2
P(0) + e(0)2

(
e(0)3 + 1

)
x(0)
√

P(0)+

+ e(0)3

(
e(0)3 + x(0)

) (
x(0) − 1

)
.

(33)

In this equation, we use the dimensionless quantities defined as

e(i)1 =
c(i)11

c(i)66

, e(i)2 =
c(i)22

c(i)66

, e(i)3 =
c(i)12

c(i)66

, x(i) =
X(i)

c(i)66

, (i = 0, n) (34)

and S(0) and P(0) are determined from (10) with parameters of the half-space. Note that
for Rayleigh waves existence in the half-space, i.e. b(0)1 and b(0)2 having real part, then (see
Vinh and Ogden [14])

0 < X(0) < min
{

c(0)66 , c(0)11

}
, (35)

which makes P(0) positive.
To calculate vector M in Eq. (31), we need an explicit form of layer matrizant ex-

pressed in Eq. (20). The eigenvalues of matrix U(i) are roots of Eq. (9) and satisfy Eq. (10)
for the ith layer. After some algebraical manipulation, we obtain the matrizant of the ith
layer as

E(i) (hi) = α(i)

 E(i)
1

1

kc(0)66

E(i)
2

kc(0)66 E(i)
3 E(i)

4

 , (36)

where

α(i) =


1√

P(i) − (S(i))2/4
, if (S(i))2 − 4P(i) < 0

1√
(S(i))2 − 4P(i)

, if (S(i))2 − 4P(i) > 0
(37)
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The matrices E(i)
j

(
j = 1, 4

)
are two-by-two matrices whose entries are dimensionless

and equal

E(i)
1 (1, 1) = mi + piai,

E(i)
1 (1, 2) =

[
nie

(i)
3 + qi

(
bie

(i)
3 − di

)]
e(i)2 ,

E(i)
1 (2, 1) = −ni + qi (di − ai) ,

E(i)
1 (2, 2) = mi + qibi,

E(i)
2 (1, 1) =

[
ni + qi

(
ai − cie

(i)
3

)]
e(i)2

r(i)µ

,

E(i)
2 (1, 2) =

pici

r(i)µ

,

E(i)
2 (2, 1) = −E(i)

2 (1, 2) ,

E(i)
2 (2, 2) =

ni + qi (bi − ci)

r(i)µ

,

E(i)
3 (1, 1) =

[
−nix(i) + qi

(
di − aix(i)

)]
r(i)µ ,

E(i)
3 (1, 2) = −pidir

(i)
µ ,

E(i)
3 (2, 1) = −E(i)

3 (1, 2) ,

E(i)
3 (2, 2) =

[
(ni + qibi)

(
e(i)1 − e(i)2

(
e(i)3

)2
− x(i)

)
+ e(i)2 e(i)3 qidi

]
r(i)µ ,

E(i)
4 (1, 1) = E(i)

1 (1, 1) ,

E(i)
4 (1, 2) = −E(i)

1 (2, 1) ,

E(i)
4 (2, 1) = −E(i)

1 (1, 2) ,

E(i)
4 (2, 2) = E(i)

1 (2, 2) ,

(38)

where

r(i)ν =
c(0)66

c(i)66

ρ(i)

ρ(0)
, r(i)µ =

c(i)66

c(0)66

, (39)

and

ai = −e(i)2

(
e(i)3 + x(i)

)
, bi = e(i)1 − x(i) − e(i)2 e(i)3

(
e(i)3 + 1

)
,

ci = e(i)2

(
e(i)3 + 1

)
, di = x(i) − e(i)1 − e(i)3 ai,

(40)

and mi, ni, pi, qi are defined as the follows.
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(1) If (S(i))2 − 4P(i) < 0,

mi = − sinh
(
εh̄i fi

)
sin
(
εh̄igi

)
Fi + cosh

(
εh̄i fi

)
cos

(
εh̄igi

)
Gi,

ni =
1√
Pi
[sinh

(
εh̄i fi

)
cos

(
εh̄igi

)
( fiGi + giFi) +

− cosh
(
εh̄i fi

)
sin
(
εh̄igi

)
( fiFi − giGi)],

pi = sinh
(
εh̄i fi

)
sin
(
εh̄igi

)
,

qi =
1√
Pi

[
cosh

(
εh̄i fi

)
sin
(
εh̄igi

)
fi − sinh

(
εh̄i fi

)
cos

(
εh̄igi

)
gi
]

(41)

where

Fi =
S(i)

2
, Gi =

√
P(i) − F2

i ,

fi =
1√
2

√√
F2

i + G2
i + Fi, gi =

1√
2

√√
F2

i + G2
i − Fi

(42)

and ε = kh, h̄i = hi/H (i = 1, n).
(2) If (S(i))2 − 4P(i) > 0

mi = cosh
(

εh̄ib
(i)
3

) (
b(i)1

)2
− cosh

(
εh̄ib

(i)
1

) (
b(i)3

)2
,

ni =
sinh

(
εh̄ib

(i)
3

)
b(i)3

(
b(i)1

)2
−

sinh
(

εh̄ib
(i)
1

)
b(i)1

(
b(i)3

)2
,

pi = cosh
(

εh̄ib
(i)
1

)
− cosh

(
εh̄ib

(i)
3

)
,

qi =
sinh

(
εh̄ib

(i)
1

)
b(i)1

−
sinh

(
εh̄ib

(i)
3

)
b(i)3

,

(43)

where

b(i)1 =

√√√√S(i) +
√
(S(i))2 − 4P(i)

2
, b(i)3 =

√√√√S(i) −
√
(S(i))2 − 4P(i)

2
. (44)

Note that in both cases of (S(i))2 − 4P(i) positive and negative, quantities mi, ni, pi, qi are
always real that makes matrices E(i)

j (j = 1, 4) real. And due to the special form of

matrices E(i) (in Eq. (36)), their product denoted by E in Eq. (26) has the same form. This
could be proved easily by direct matrix multiplication. In particular,

E (H) =

(
n

∏
i=1

α(i)

) E1
1

kc(0)66

E2

kc(0)66 E3 E4

 (45)
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where

Ē (H) :=
(

E1 E2
E3 E4

)
=

n

∏
i=1

(
E(i)

1 E(i)
2

E(i)
3 E(i)

4

)
. (46)

Note that this matrix is dimensionless and real and it will be used to find the secular
equation instead of the matrizant E(H) which has dimension and could be complex due
to the factors

(
∏n

i=1 α(i)
)

and
(

kc(0)66

)
in Eq. (45).

Inspecting Eq. (31) and Eq. (45), we see that

M =

(
n

∏
i=1

α(i)

)2

kc(0)66

[
kc(0)66 M̄1, M̄2, M̄3, M̄4, M̄5,

M̄6

kc(0)66

]
, (47)

where the dimensionless vector M̄ = [M̄1, M̄2, M̄3, M̄4, M̄5, M̄6]T is defined similarly to
vector M in Eq. (31) in which the matrix E is replaced by the dimensionless matrix Ē.

Substituting vectors M and V from Eq. (47) and Eq. (32) into the secular equation,
Eq. (30), it can be written as(

b(0)1 − b(0)2

)
k2(c(0)66 )

4

(
n

∏
i=1

α(i)

)2

M̄V̄ = 0. (48)

Since b(0)1 − b(0)2 6= 0 and α(i) 6= 0, this equation could be expressed as

M̄V̄ = 0. (49)

Note that this is a real equation of dimensionless frequency ε and velocity x(0), and di-
mensionless material parameters of layers and half-space.

4. NUMERICAL CALCULATION

For a given set of material parameters of layers and half-space, all the dimension-
less parameters are computed by Eqs. (34), (39). Our aim is to compute the phase velocity
of Rayleigh waves in the form x(0) for a given wave number expressed in form of ε. First,
we compute vector V̄ in the secular equation, Eq. (49), by Eqs. (33). To calculate vector
M̄, we compute all the matrizant of layers in dimensionless form by Eq. (26), then use
Eq. (46) to compute their product to obtain the matrix Ē. The vector M̄ is then computed
by Eq. (31) in which the matrix E is replaced by Ē. Finally, the phase velocity x(0) is found
by setting the scalar product of vectors V̄ and M̄ equal zero.

Table 1. Properties of Materials

Material E1(GPa) E2(GPa) G12(GPa) ννν12 ρρρ(g/cm2)

Graphite/epoxy 30.00 0.750 0.375 0.2500 1.9

Carbon/epoxy 142.17 9.255 4.795 0.334 1.9

Glass/epoxy 38.49 9.367 3.414 0.2912 2.66

Steel 77.4 77.4 29.025 0.3333 7.9
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Fig. 2. Phase velocity dispersion of some first modes for orthotropic
layered half-space given in Tab. 1.

To illustrate the method, we consider a model of orthotropic layered half-space
consisting of three layers overlying a half-space with material properties given in Tab. 1
(see Liu and Xi, 2002, Chapter 3 [15]). All layers are assumed to have the same thickness.
The dispersion curve of this model is shown in Fig. 2 with several first modes. The x-axis
is the dimensionless frequency ε = kH where H is the sum of thicknesses of layers. The
y-axis is the ratio of the phase velocity to the shear wave velocity of the half-space in the

principal direction x1-axis denoted by c0 =
√

c(0)66 /ρ(0). It can be seen from the figure that
the threshold velocity of higher modes is c0 as the result of condition given in (35).

Note that, when frequency gets smaller, the phase velocity approaches to the
Rayleigh velocity of the half-space denoted by c(0)R . For the given material parameters
of the half-space, this velocity could be computed by a formula given in Vinh and Og-
den [14] as

c̄(0)R =
c(0)R
c0

= 0.9194. (50)

This result is consistent with the our numerical calculation.

5. CONCLUSION

By using the Sylvester’s theorem, the matrizant of a layer is expressed explicitly. Its
equivalent form for the problem of finding dispersive curve of Rayleigh surface waves is
then obtained. The equivalent form of the matrizant is always real and expressed in terms
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of the dimensionless variables and parameters. The problem of the vertical wave number
in the half-space being complex due to the anisotropy is handled by using the Vieta’s
formulas for the propagation equation to obtain the secular equation of Rayleigh waves
in convenient form to numerical calculation. A numerical illustration for the dispersive
curves of Rayleigh waves in an orthotropic layered half-space is presented.
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