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Abstract. In this paper, direct numerical simulations are presented for solidification with
the effects of density difference between the solid and liquid phases. A front-tracking
method is used. The solidification front, i.e. the solid-liquid interface separating solid
and liquid, is represented by connected elements that move on a rectangular and station-
ary grid. The Navier-Stokes equations are solved by a projection method on the entire
domain including the solid phase. An indicator function reconstructed from the front in-
formation is used to set the velocities in the solid phase to zero, and thus to enforce the
no-slip condition at the interface. The method is validated through comparisons with ex-
act solutions for one- and two-dimensional problems. The method is then used to simulate
the solidification processes with the effects of volume change due to density difference.
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1. INTRODUCTION

Solidification problems occur in many industrial applications, and have thus re-
ceived much attention, through experimental, theoretical and simulation investigations
[1]. Experiments can be found in [2–5], in which the authors mentioned the effects of
volume change on the phase change process. Many phase change materials such as wa-
ter, silicon (Si), germanium (Ge), . . . have density difference between the solid and liquid
phases. Accordingly, volume change always appears during the solidification process,
and considerably affects the final products of the phase change process [3].

Phase change problems are non-linear due to the presence of a moving interface
between the solid and liquid phases associated with latent heat release. Accordingly,
they have a limited number of analytical solutions. Most of them apply to idealized and
simplified systems. Some of the basic solutions can be found in [6, 7].

Concerning simulations, basically, two different approaches have been used for nu-
merical simulations of the phase change processes: (1) fixed-domain formulation and (2)
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variable-domain formulation. The fixed-domain approach can be referred to “enthalpy-
porosity formulation” [8]. In this approach, the total enthalpy, rather than the temper-
ature, is considered as the primary dependent variable in the energy equation. The
enthalpy-porosity formulation combined with moving finite element methods has been
developed to solve phase change problems [9]. Other popular methods for tracking in-
terface and moving boundaries in the Eulerian frame are the volume of fluid method
[10–12], the level set method [13] and the phase field method [14]. Hybrid methods
[15–17] between the Lagrangian and Eulerian approaches have also been proposed for
phase change problems. In the variable-domain formulation, body-fitted grid meth-
ods [18] have been widely used. However, most of the numerical investigations previ-
ously mentioned have neglected volume change. In Vietnam, the volume of fluid method
has been used for gas-liquid two-phase flows [19] and for porous media [20]. However,
to our knowledge, numerical investigations concerning the phase change process with
the above-mentioned issues are still lacking. These gaps motivate our present study on
direct numerical simulations of solidification. We here use a front-tracking method for
multiphase flows [16,21,22] with modification for solidification accompanied by volume
change.

2. MATHEMATICAL FORMULATION AND NUMERICAL METHOD

Fig. 1 shows a typical solidification problem with an interface separating solid and
liquid. The fusion temperature of the material is Tm. We assume that the liquid is in-
compressible and Newtonian, and volume change is assumed to occur only at the phase
change front. For computational purposes, we treat all phases as one continuum with
variable properties such as density ρ, viscosity µ, thermal conductivity k and heat capac-
ity Cp. In terms of this single-field representation, the momentum and thermal energy
equations are

∂ (ρu)
∂t

+∇ · (ρuu) = −∇p +∇ ·
[
µ(∇u +∇uT)

]
+ ρg , (1)

∂

∂t
(
ρCpT

)
+∇ ·

(
ρCpTu

)
= ∇ · (k∇T) +

∫
f

q̇ f δ
(
x− x f

)
dS. (2)

Here, u is the velocity vector, p is the pressure, and g is the gravitational accelera-
tion. The interface is denoted by f . The Dirac delta function δ(x – x f ) is zero everywhere
except for a unit impulse at the interface x f . T and the superscript T denote respectively
the temperature and the transpose. S indicates the solidification surface. D/Dt is the
material derivative. q̇ f is the heat flux at the solidification interface, given as

q̇f = ks
∂T
∂n

∣∣∣∣
s
− kl

∂T
∂n

∣∣∣∣
l
= ṁLh = −ρsVnLh , (3)

where the subscripts s and l represent solid and liquid, respectively. Vn is the velocity
normal to the solidification front (Fig. 1) and Lh is the latent heat. The velocity field can
be written as

u = us I + ul(1− I), (4)
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(a) Solidification interface (b) Interface - font tracking representation

Fig. 1. A typical solidification problem with the solidification interface
separating liquid and solid

where I is an indicator function which is one in the solid and zero in the fluid (Fig. 1). I is
determined from front properties

∇I =
∫
f

δ
(
x− x f

)
n f dS, (5)

where n f is the normal vector to the interface. Mass conservation at the solidification
interface gives

ṁ = ρln f ·
(
ul − n f Vn

)
= ρsn f ·

(
us − n f Vn

)
. (6)

Using Eq. (5) and taking the divergence of Eq. (4) with ∇ · ul = us = 0 yields the
following mass conservation equation

∇ · u =
∫
f

δ (x− xf) (us − ul) · n f dS. (7)

Elimination of Vn in Eq. (6) with noting that gives

(ul − us) · n f =
q̇ f

Lh

(
1
ρl
− 1

ρs

)
. (8)

Using Eq. (7) and Eq. (8) yields the following mass conservation

∇ · u =
1
Lh

(
1
ρs
− 1

ρl

) ∫
f

δ (x− xf) q̇fdS. (9)

In summary, the governing equations for the problem includes Eqs. (1), (2) and (9).
These equations are solved by the front-tracking/finite difference method on a staggered
grid with second order accuracy in time and space.
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3. NUMERICAL METHOD

Here we use the front-tracking method [21] with modification accounting for so-
lidification and volume change upon solidification. The phase boundary, i.e. the solidifi-
cation interface, is represented by line segments that move on the rectangular and fixed
grid (Fig. 1). These elements are linked together, and are used to transfer information
between the interface and the grid. Movement of the phase boundary points is specified
from

Dx f
/

Dt = Vnn f , (10)
where Vn is simply given by

Vn = −ṁ/Lh = −q̇ f
/
(ρsLh). (11)

The heat source q̇ f is calculated using a normal probe technique [16, 22] described
as follows. At a point P (xp) on the interface we draw a line normal to the interface
(Fig. 1b), and specify two points S (in solid) and L (in liquid) on each side of the interface
such that where h is the grid spacing. The temperatures Ts and Tl at these points are
interpolated from the nearest grid temperatures Tij by

Ts,l = ∑
ij

TijDij (xs,l) . (12)

Here, Dij(xs,l) is the area weighting function defined as

Dij (xs,l) = d
(
xs,l
/

h− i
)

d
(
ys,l
/

h− j
)

, (13)

where

d (r) =

 1− r, 0 < r < 1,
1 + r, − 1 < r < 0
0, |r| ≥ 1

(14)

i and j are the indices of the fixed grid point, with noting that the indices i and j corre-
sponding with the point S are different from those corresponding with the point L.

The heat source at P is calculated using the first-order finite difference approxima-
tion of Eq. (3)

q̇p =
1
h
(ks (Ts − Tm)− kl (Tm − Tl)) . (15)

This heat source is then distributed to the nearest grid points by

Qij = ∑
p

q̇pDij
(
xp
) ∆sp

h2 , (16)

where ∆sp is the average of the straight line distances from the point P to the two points
on either side of P on the interface. Eq. (16) is the discretized form of the last term in
Eq. (2), where we have approximated the Dirac function by the area weighting func-
tion Dij.

The indicator function I is reconstructed from the new position of the interface
points. The values of the material properties are then found: ϕ = ϕs I + (1− I) ϕl, where
ϕ stands for ρ, µs Cp, or k. At this point, we have all information to integrate the energy
and Navier-Stokes equations which are descritized using an explicit predictor-corrector
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time-integration method and a second-order centered difference approximation for the
spatial derivatives. The discretized equations are solved on a fixed, staggered grid us-
ing the MAC method [23]. Since there’s the presence of the solid phase, the standard
predictor-corrector scheme is modified as follows.
(1) A provisional velocity field u∗∗ is calculated

u∗∗ = (∆tAn + ρun)
/

ρn+1, (17)

where A represents the right-hand side of Eq. (1) which contains the advection, the dif-
fusion and the gravitational term, and n is the current time.
(2) u∗∗ is then corrected by I

u∗ = (1− I)u∗∗. (18)
(3) The pressure is found by solving the Poisson equation

∇ 1
ρn+1 · ∇pn+1 =

∇ · u∗ −∇ · un+1

∆t
. (19)

where ∇ · un+1 is replaced with the right-hand side of Eq. (9).
(4) The final velocity field at the next time n + 1 is updated

un+1 = ∆tu∗ − ∆t (1− I)∇pn+1
/

ρn+1. (20)

(5) The temperature field at the next time n + 1 is found by

Tn+1 =
(

∆tBn + ρnCn
p

)/(
ρn+1Cn+1

p

)
, (21)

where B represents the right-hand side of Eq. (2).

4. RESULTS

4.1. One-dimensional problem
In order validate the method, we first solve a one-dimensional moving boundary

problem, and compare the computational results with analytical solutions [6], as shown
in Fig. 2. Initially, the liquid is at a uniform temperature Ti equal to the melting temper-
ature Tm. At t = 0, the bottom boundary at y = 0 is suddenly lowered to Tc < Tm, and
is maintained at this temperature for time t > 0. As a results, the solidification interface
starts at y = 0, and moves upward. The governing equations of this problem are given,
in dimensionless, as

∂θ
/

∂τ = ∂θ
/

∂Y2 in 0 < Y < S(τ), τ > 0
θ (S(τ) < Y ≤ 1, τ > 0) = 1
θ (Y = S(τ), τ > 0) = 1

(22)

The following dimensionless quantities are used

θ = (T − Tc)
/
(Tm − Tc), Y = y

/
H, S = s/H, τ = αlt

/
H2, (23)
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Fig. 2. One-dimensional solidification problem

α is the thermal diffusivity, s is the front location, and H is the domain height. The ther-
mal properties of the solid and liquid are assumed equal. The non-dimensional form of
Eq. (3) is

∂θ

∂Y

∣∣∣∣
s
− ∂θ

∂Y

∣∣∣∣
l
=

1
St

dS
dτ

, (24)

where St is the Stefan number defined as Lh. The exact solutions of this problem for the
temperature and for the front location are respectively given as [6]

θ = er f
(
Y
/(

2
√

τ
))/

er f (λ), (25)

S = 2λ
√

τ, (26)
where λ is the root of

λeλ2
er f (λ) = St

/√
π, (27)

and erf is the error function.
Simulations were performed at two Stefan numbers St = 0.1 and 5, and with a

computational domain size of 0.5× 1. The grid resolution is 64× 128. The initial front
location and the temperature used for the simulation were found from the exact solutions
at the moment τ = τ0 when a thin solid layer with thickness S0 = 0.1 has formed.

Results for the front location compared with the exact solution and with the com-
putational results reported in [17], for St = 0.1 and for St = 5 are shown in Fig. 3a and
Fig. 3b, respectively. Higher Stefan number corresponds to lower latent heat released,
and results in more rapid solidifying. As seen from Fig. 3, agreement between the nu-
merical and exact results is excellent. The average error is less than 0.044% for St = 0.1,
and less than 0.06% for St = 5. As compared with the results reported in [17], the present
method produces the solutions that are more accurate, as shown in Fig. 3. In addition,
as solidification proceeds, the error does not increase. This confirms the reliability and
accuracy of the method for resolving the evolution of the front position.

Next, we consider the effect of density difference between the solid and liquid
phase, i.e. volume change upon solidification for this 1D problem. Fig. 4 compares
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(a) St = 0.1 (b) St = 5

Fig. 3. Comparisons of the present computational results (open symbols) with the exact
solutions (solid line), and with the computational results reported in [17] for

a 1D solidification problem shown in Fig. 2

Fig. 4. Flow field during solidification for different solid-to-liquid density ratios ρsl at τ = 0.1815.
The velocity is normalized by αl/H. The solid line represents the solid-liquid interface.

The Stefan number is 1.0. θ is the temperature

the liquid velocity vectors midway through solidification for three solid-to-liquid den-
sity ratios: ρsl = ρs/ρl = 0.9 (expansion), ρsl = 1.0 (no volume change) and ρsl = 1.1
(shrinkage). For ρsl = 0.9 (left), the solid has a lower density in comparison with the
liquid, and thus the liquid flows away from the solidification front. On the other hand,
for ρsl = 1.1 (right), the liquid flows toward the solidification front to compensate. For
ρsl = 1.0 (center), the densities of the solid and liquid phases are equal, resulting in no
change in volume, and thus there is no flow in the liquid region. Fig. 4 shows that at
this time the solidification front in the case of expansion (ρsl = 0.9) has advanced further
than that in the case of shrinkage (ρsl = 1.1). In other words, the presence of expansion
increases the solidification rate. This result is understandable since the melt flows away
from the solid. Fig. 5 confirms that increasing the density ratio leads to a decrease in the
solidification rate and thus reduces time to complete solidification.
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Fig. 5. Temporal variation of the average height
of all points on the solidification front for three
density ratios shown in Fig. 4

8 



Fig. 6. Two-dimensional Stefan problem

4.2. Two-dimensional problems
We next compare our computational results with analytical solutions for a 2D Ste-

fan problem (Fig. 6) in which a line heat source Q causes a circular solid seed at the center
to evolve in the direction of increasing the radius of the seed [7]

∂
(
CpT

)
∂t

=
1
r

∂

∂r

(
kr

∂T
∂r

)
. (28)

The exact analytical solution of the temperature field is

T (r, t) =
Q

4πks

[
Ei
(
− r2

4αst

)
− Ei

(
−λ2)] , (29)

in the solid, and

T (r, t) = 1− Ei
(
− r2

4αlt

)/
Ei
(
−λ2αs/αl

)
, (30)

in the melt. The exact front location is s (t) = 2λ
√

αst, where λ is the root of

Q
4π

e−λ2
+

kl

Ei (−λ2αs/αl)
e−λ2αs/αl =

λ2

St
. (31)

Here, St = 1
/
(ραsLh) is the Stefan number, Q is the heat source at the center of the

circular interface, and Ei is the exponential integral function.
Simulations were performed for this 2D problem with St = 0.1, Q = 40, Cpsl =

Cps/Cpl = 0.5 and ksl = ks/kl = 2. A 1× 1 domain with a grid resolution of 128× 128
was used. The initial front location and temperature used for simulations were found
from the exact solutions at the moment t = t0 when a small, circular solid seed with a
radius r = S(t0) = 0.1 has formed around (x, y) = (0.5, 0.5). The temperature conditions
at the boundaries for the simulations correspond to the exact solutions at each time step.
To circumvent computation of the infinitely negative temperature at r = 0, i.e. (x, y) =
(0.5, 0.5), we set the temperature at the four grid points around (x, y) = (0.5, 0.5) to the
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(a) Evolution of the solidfication font (b) Temperature along y = 0.5

Fig. 7. Comparisons with exact solutions of Carslaw and Jaeger [7] for a 2D Stefan solidification
problem. The data is plotted at time t = 0.03, 0.11, 0.19 and 0.27

exact solution. Fig. 7 compares the computational results with the exact solutions for the
evolution of the front and temperature. It is clear that the computational results agree
excellently with the analytical ones.

4.3. Ingot casting problem
The finally considered problem in this study is the solidification process in a rect-

angular cavity W × H. The cavity is initially filled with liquid at the fusion temperature
Tm. At time t = 0, a constant temperature Tc < Tm is suddenly applied to the side and
bottom walls (Fig. 8a). We neglect the effects of natural convection in the liquid region.
Accordingly, solidification starts at the walls, and the solid-liquid interface propagates to
the center. Pure aluminum is taken to be the phase change material. Its properties can be
found in [17]. The nondimensional parameters include

Pr =
Cplµl

kl
= 0.0305, St =

Cpl(Tm − Tc)

Lh
= 0.1, ksl =

ks

kl
= 2.5, Cpsl =

Cps

Cpl
= 0.84. (32)

The temperature is non-dimensionalized as θ = (T − Tc)
/
(Tm − Tc). The non-

dimensional time is τ = t
/(

ρlCplH
2
/

kl

)
. The density of solid aluminum is different

from that of molten aluminum, i.e. ρsl = ρs/ρl = 1.17. Half of the physical domain is
simulated with H/(0.5W) = 2.0 and with a grid resolution of 128× 256. Due to suddenly
applying the cold temperature at the bottom and side walls, solidification starts at the
walls, and the phase change front advances to the center, as shown in Fig. 8b. During the
initial stages of solidification, the solidification rate is high because of a large temperature
gradient. As solidification proceeds, the solidification rate gradually decreases.

In many works, the authors often neglected the effect of volume change on solidi-
fication, i.e ρsl assumed to be one [17]. However, as previously mentioned, the densities
of liquid and solid aluminum are different. This density difference results in volume
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(a) (b)

Fig. 8. Ingot casting problem of aluminum: (a) a schematic and (b) temporal evolution of the
solidification front (plotted every ∆τ = 0.091)

(a) (b)

Fig. 9. Ingot casting problem: (a) flow and temperature field at time τ = 0.14, and (b) temporal
variation of the ratio of the solid area to the area of the cavity. The solid line in (a) represents the

solidification front

change, i.e. shrinkage, upon solidification. To demonstrate this effect, we have also per-
formed a simulation without volume change (ρsl = 1.0), and compare these two cases,
as shown in Fig. 9. As can be ready seen from the figure, density difference between the
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solid and liquid phases causes the liquid to flow toward the solidification front to com-
pensate (Fig. 9a). Accordingly, shrinkage reduces the growth rate and thus increases time
to complete solidification as shown in Fig. 9b. This indicates an important role of volume
change in the solidification process.

5. CONCLUSION

We have presented the front-tracking finite/difference method to simulate solidi-
fication of phase change materials in the presence of volume change. The solidification
interface is represented by connected points. These front points propagate on the fixed
and rectangular grid on which the Navier-Stokes and energy equations are solved. The
standard projection method is modified to account for the presence of the solid phase
where the velocity is zero. The method is validated through comparisons with exact so-
lutions for one- and two-dimensional solidification problems. These validations are sat-
isfied and support the accuracy of the method. To demonstrate the effects of volume
change on the solidification process, computations were performed for the cases with-
out volume change and with volume change. Numerical results indicate that shrinkage,
i.e. ρsl > 1, reduces the solidification rate while expansion, i.e. ρsl < 1, increases the
solidification rate.
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