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Abstract. Vibration of a pendulum can be reduced by single dynamic vibration absorbers
(DVAs) moving in tangential or in normal direction of pendulum’s orbit. The first DVA
works in the linear zone while the second one works in the nonlinear zone. This paper
uses the equivalent linearization technique to obtain an analytical form of the frequency
response of a nonlinear pendulum structure, which is attached with both types of DVA.
The numerical calculations are carried out to verify the analytical results. Some useful con-
clusions on the optimal parameters of the DVA can be found from the analytical solution.
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1. INTRODUCTION

Dynamic vibration absorber (DVA), which consists of a moving mass attached to
the main structure through springs and dampers, is a well-known device to suppress
vibration. The theory of linear DVA is well-developed in literature [1]. Beside the tra-
ditional sliding mass type, the pendulum types of DVA configuration are also investi-
gated [2, 3]. Though there are some studies on the pendulum type of DVA, the primary
structure is often modeled as a spring-mass system. In practice, the pendulum type struc-
tures also have high interest in research and engineering application. For example, some
types of structures such as ropeway gondola, crane loads or floating structures (ships,
tension leg platform) should be described by pendulum models. Using DVA was a mean
for reducing the swing of pendulum structures [4, 5]. However, the effect of DVA on a
pendulum structure can be quite different from that on a spring-mass structure. Espe-
cially, the effects of DVA’s locations and pendulum’s nonlinearity are important. Two
types of installation of DVA in a pendulum structure are shown in Fig. 1a, b.
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Fig.1. Some types of DVA attachments in a pendulum structure 

(a) Single DVA, tangential direction, (b) Single DVA, normal direction, (c) Two DVAs, two 

directions. 

The first one moves in the tangential direction of the pendulum’s orbit as shown in Fig.1a [5]. The 

more general study on this type of DVA installed in the inverted pendulum type systems were also 

presented in [6]. This type of DVA works in the linear zone but it still has a disadvantage. If the 

DVA in Fig.1a is located at the center of pendulum oscillation (the location of large motion), it has 

no effect at all. This phenomenon is very surprising but is proved in some previous works [5, 7]. 

Therefore, the DVA in Fig.1a should be located as high as possible, which is not easy to satisfy in 

some practical situations. In the opposite way, the DVA in Fig.1b moving in the radial direction of 

the pendulum’s orbit still has good effect when it locates at the center of oscillation but it only 

works in the nonlinear zone [8, 9]. In this paper, we study the combination of two DVAs in Fig.1c. 

While the system is nonlinear, the novelty of this paper comes from the analytical analysis of the 

pendulum attached with two DVAs as shown in Fig.1c. 

2. Equations of motion 

In Fig. 2, let’s consider a pendulum structure having a concentrated mass m and a pendulum length 

l. Denote c as the structural damping coefficient,  is the rotational angle of the pendulum and g is 

the acceleration of gravity. The notations u and v respectively are the displacements in normal and 

tangential directions of two DVAs, lu and lv respectively are the distances between the fulcrum and 

two DVAs in the static condition, mu and mv respectively are the masses of two DVAs, ku and kv 

respectively are the spring constants of two DVAs, cu and cv respectively are the damping 

coefficients of two DVAs. 

(a) (b) (c) 

Fig. 1. Some types of DVA attachments in a pendulum structure
(a) Single DVA, tangential direction, (b) Single DVA, normal direction,

(c) Two DVAs, two directions

The first one moves in the tangential direction of the pendulum’s orbit as shown in
Fig. 1a [5]. The more general study on this type of DVA installed in the inverted pendu-
lum type systems were also presented in [6]. This type of DVA works in the linear zone
but it still has a disadvantage. If the DVA in Fig. 1a is located at the center of pendulum
oscillation (the location of large motion), it has no effect at all. This phenomenon is very
surprising but is proved in some previous works [5, 7]. Therefore, the DVA in Fig. 1a
should be located as high as possible, which is not easy to satisfy in some practical sit-
uations. In the opposite way, the DVA in Fig. 1b moving in the radial direction of the
pendulum’s orbit still has good effect when it locates at the center of oscillation but it
only works in the nonlinear zone [8, 9]. In this paper, we study the combination of two
DVAs in Fig. 1c. While the system is nonlinear, the novelty of this paper comes from the
analytical analysis of the pendulum attached with two DVAs as shown in Fig. 1c.

2. EQUATIONS OF MOTION

In Fig. 2, let’s consider a pendulum structure having a concentrated mass m and
a pendulum length l. Denote c as the structural damping coefficient, θ is the rotational
angle of the pendulum and g is the acceleration of gravity. The notations u and v respec-
tively are the displacements in normal and tangential directions of two DVAs, lu and lv
respectively are the distances between the fulcrum and two DVAs in the static condition,
mu and mv respectively are the masses of two DVAs, ku and kv respectively are the spring
constants of two DVAs, cu and cv respectively are the damping coefficients of two DVAs.

Consider the coordinate system as shown in Fig. 2, the positions of the structure
(x, y), the DVA moving in tangential direction (xv, yv) and the DVA moving in normal
direction (xu, yu) are obtained as follows

x = l sin θ, y = l cos θ,
xv = lv sin θ + v cos θ, yv = lv cos θ − v sin θ,

xu = (lu − u) sin θ, yu = (lu − u) cos θ.
(1)
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Fig.2. Pendulum attached with two orthogonal DVAs 

Consider the coordinate system as shown in Fig. 2, the positions of the structure (x, y), the DVA 

moving in tangential direction (xv, yv) and the DVA moving in normal direction (xu, yu) are obtained 

as follows: 
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Fig. 2. Pendulum attached with two orthogonal DVAs

The kinetic energy T, the potential energy V and the energy dissipation function F are

T =
1
2

m
(
ẋ2 + ẏ2)+ 1

2
mv
(
ẋ2

v + ẏ2
v
)
+

1
2

mu
(
ẋ2

u + ẏ2
u
)

, (2)

V = mg (l − y) + mvg (lv − yv) + mug (lu − u− yu) +
1
2

kuu2 +
1
2

kuv2, (3)

F =
1
2

cθ̇2 +
1
2

cuu̇2 +
1
2

cvv̇2. (4)

Assume that the pendulum is subjected to a single harmonic external force Pcos(ωt),
in which ω is the excitation frequency and P is the excitation magnitude. The Lagrange
equations are given by

d
dt

(
∂ (T −V)

∂θ̇

)
− ∂ (T −V)

∂θ
+

∂F
∂θ̇

= lP cos (ωt)

d
dt

(
∂ (T −V)

∂v̇

)
− ∂ (T −V)

∂v
+

∂F
∂v̇

= 0

d
dt

(
∂ (T −V)

∂u̇

)
− ∂ (T −V)

∂u
+

∂F
∂u̇

= 0

(5)

Using Eqs. (1), (2), (3), (4) and (5) gives(
ml2 + mu (lu − u)2 + mv

(
l2
v + v2)) θ̈ + cθ̇ + g (ml + mu (lu − u) + mvlv) sin θ+

+mvlvv̈ + mvgv cos θ + 2mvvv̇θ̇ − 2lmu θ̇ (lu − u) u̇ = lP cos (ωt) ,
mvv̈ + mvlv θ̈ −mv θ̇2v + mvg sin θ + cvv̇ + kvv = 0,
muü + mu θ̇2 (lu − u)−mug (1− cos θ) + cuu̇ + kuu = 0.

(6)
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The following parameters are introduced

µv =
mv

m
, µu =

mu

m
, ωs =

√
g
l

, ζs =
c

2l2mωs
,

αu =
ku/mu

ω2
s

, ζu =
cu

2muωs
, αv =

kv/mv

ω2
s

, ζv =
cv

2mvωs
,

γv =
lv

l
, γu =

lu

l
, zu =

u
l

, zv =
v
l

, τ = ωst, β =
ω2

ω2
s

, θm =
P

2ζsω2
s ml

.

(7)

In which, µ is the mass ratio, ωs and ζs respectively are the natural frequency and
the structural damping ratio of the pendulum, αu and αv respectively are the square of
natural frequency ratios of two DVAs in normal and tangential directions, ζu and ζv re-
spectively are the damping ratios of two DVAs in normal and tangential directions, γu
and γv respectively are the location parameters specifying the positions of two DVAs,
zu and zv respectively are the non-dimensional forms of the displacements of two DVAs
in two directions, τ is the non-dimensional time with time scale ω−1

s , β is the square of
the ratio between excitation frequency and main structure frequency, θm is the maximum
vibration angle at the resonance frequency. The motion equations (6) are simplified and
rearranged as following non-dimensional form(

1 + µu (γu − zu)
2 + µv

(
γ2

v + z2
v
))

θ̈ + 2ζs θ̇ + (1 + µu (γu − zu) + µvγv) sin θ+

+µvγv z̈v + µvzv cos θ + 2µvzv żv θ̇ − 2µu θ̇ (γu − zu) żu = 2ζsθm cos
(√

βτ
)

,
z̈v + 2ζv żv + αvzv + γv θ̈ − θ̇2zv + sin θ = 0,
z̈u + 2ζu żu + αuzu + θ̇2 (γu − zu)− (1− cos θ) = 0,

(8)

in which the dot operator from now denotes the differentiation with respect to normal-
ized time τ. The full nonlinear equations (8) are used in the numerical calculations in
section 3.

3. ANALYTICAL FORM OF FREQUENCY RESPONSE CURVE

3.1. Equations in polynomial form
Because the system is nonlinear, some appropriate simplifications should be done

to obtain the analytical form of the frequency response. Let us assume that the DVA nor-
malized displacement zu is small enough in comparison with the DVA location parame-
ter γu and the DVA mass ratio µu is small enough in comparison with 1. The following
approximations are obtained

1 + µu (γu − zu)
2 ≈ 1 + µuγ2

u, 1 + µu (γu − zu) ≈ 1 + µuγu . (9)

After that, the trigonometric terms are expanded by Taylor series, and then the
Eq. (8) is rewritten as(

1 + µuγ2
u + µvγ2

v
)

θ̈ + 2ζs θ̇ + (1 + µuγu + µvγv) θ
+µv (γv z̈v + zv)− 2γuµu θ̇żu + h.o.t = 2ζsθm cos

(√
βτ
)

,
z̈v + 2ζv żv + αvzv + γv θ̈ + θ + h.o.t = 0,
z̈u + 2ζu żu + αuzu + γu θ̇2 − θ2/2 + h.o.t = 0,

(10)
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in which “h.o.t” denotes the higher order terms, which have order larger than 2. If the
higher order terms “h.o.t” are assumed to be ignored, the equations in second order ap-
proximation become(

1 + µuγ2
u + µvγ2

v
)

θ̈ + 2ζs θ̇ + (1 + µuγu + µvγv) θ+
+µv (γv z̈v + zv)− 2γuµu θ̇żu = 2ζsθm cos

(√
βτ
)

,
z̈v + 2ζv żv + αvzv + γv θ̈ + θ = 0,
z̈u + 2ζu żu + αuzu + γu θ̇2 − θ2/2 = 0.

(11)

3.2. Frequency response
To obtain the analytical form of the frequency response, the equivalent lineariza-

tion approach is used to approximate the Coriolis term−2γuµu θ̇żu in the first equation of
(11). The Coriolis term contains both velocities of the pendulum and the DVA in normal
direction. The Coriolis term can produce the damping effects (direct and cross terms) as
well as stiffness effect (direct and cross terms), i.e. the general linearization should be

−2γuµu θ̇żu ≈ a1θ + a2θ̇ + a3zu + a4żu + a5zv + a6żv ,

where ai(i = 1, ..., 6) are the linearization coefficients. However, this complete lineariza-
tion can not result in the approximated analytical solution. Instead of that, we only con-
sider the most important effect of the Coriolis term, namely the effect of direct damping to
the pendulum. With this assumption, the Coriolis term is replaced by the linear effective
damping as

− 2γuµu θ̇żu ≈ 2ζe θ̇, (12)

in which ζe is the effective damping ratio, which is chosen to minimize the following error

E =
〈(

2γuµu θ̇żu + ζe θ̇
)2
〉

, (13)

in which <> is the time average in one vibrational cycle. Setting the derivative of E with
respect to ζe equal to zero gives

ζe =
−µuγu

〈
θ̇2żu

〉〈
θ̇2
〉 =

−µuγu

2π∫
0

θ̇2żudτ

2π∫
0

θ̇2dτ

. (14)

Substituting (12) into (11) gives(
1 + µuγ2

u + µvγ2
v
)

θ̈ + 2 (ζs + ζe) θ̇ + (1 + µuγu + µvγv) θ+
+µv (γv z̈v + zv) = 2ζsθm cos

(√
βτ
)

,
z̈v + 2ζv żv + αvzv + γv θ̈ + θ = 0,
z̈u + 2ζu żu + αuzu + γu θ̇2 − θ2/2 = 0.

(15)
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We will show that the system of Eqs. (15) has stationary solutions in analytical
forms. Indeed, let the stationary solutions express as

θ =
(θr + iθi) ei

√
βτ + (θr − iθi) e−i

√
βτ

2
,

zv =
(zvr + izvi) ei

√
βτ + (zvr − izvi) e−i

√
βτ

2
,

zu =
(zur + izui) e2i

√
βτ + (zur − izui) e−2i

√
βτ

2
+ zst ,

(16)

in which “i” denotes the imaginary unit and “e” denotes the exponential function, θr, zvr,
zur are the real parts and θi, zvi, zui are the imaginary parts of the complex amplitudes, zst
is the constant displacement of the DVA moving in normal direction. Substituting (16)

into (15), equating the coefficients of ei
√

βτ and e−i
√

βτ yields(
1+µvγv+µuγu−

(
µuγ2

u+µvγ2
v+1

)
β
)

θr−2 (ζs+ζe)
√

βθi+µv (1−γvβ) zvr =2ζsθm ,(
1+µvγv+µuγu−

(
µuγ2

u+µvγ2
v+1

)
β
)

θi+2 (ζs+ζe)
√

βθr+µv (1−γvβ) zvi =0 ,
(1− γvβ) θr + (αv − β) zvr − 2ζv

√
βzvi = 0,

(1− γvβ) θi + (αv − β) zvi + 2ζv
√

βzvr = 0,

(αu − 4β) zur − 4ζu
√

βzui = −
1
2

(
γuβ +

1
2

) (
θ2

i − θ2
r
)

,

(αu − 4β) zui + 4ζu
√

βzur =

(
γuβ +

1
2

)
θrθi .

(17)
By using the identities

2π∫
0

e2i
√

βτdτ =

2π∫
0

e−2i
√

βτdτ =

2π∫
0

e4i
√

βτdτ =

2π∫
0

e−4i
√

βτdτ = 0,

the effective damping ζe in (14) reduces to

ζe =
√

βµuγu
2θrθizur + θ2

i zui − θ2
r zui

θ2
r + θ2

i
. (18)

Eliminating zvr, zur, zvi, zui from (17) and using (18) give(
1 + µvγv + µuγu −

(
µuγ2

u + µvγ2
v + 1

)
β− µv (1− γvβ)2 (αv − β)

(αv − β)2 + 4ζ2
vβ

)2

q+

+4β

(
βµuγuζu (1 + 2γuβ)

(αu − 4β)2 + 16ζ2
uβ

q + ζs +
µv (1− γvβ)2 ζv

(αv − β)2 + 4ζ2
vβ

)2

q = 4ζ2
s θ2

m ,

(19)

in which q is the square of vibration angle amplitude defined by

q = θ2
r + θ2

i . (20)

In brief, the analytical form of the frequency response is represented by the cubic
equation (19) with respect to the square of vibration angle amplitude q. In the numerical
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simulations below, the cubic equation has only a unique real root. In general the equation
can have multiple real roots. In this case, the stability analysis should be undertaken.
However, the stability analysis is much complex, beyond the scope of this paper and
needs to be done in a separate technical note or short communication.

The analytical form of the frequency response (19) under single harmonic excita-
tion is quite simple, and can be used to speed up the process to find the optimal DVA’s
parameters. From (19), we can draw some preliminary observations as:

- To reduce q, the denominators in (19) should be small. Because the large vibration
occurs near the resonance frequency, we have β ≈ 1. Therefore, the optimal values of αv
and αu should be near 1 and 4 respectively.

- Because the damping ratios ζv and ζu appear in both numerator and denominator,
their values should not be too large or small.

- When γv ≈ 1, the term 1− γvβ is very small and the DVA moving in the tan-
gential direction (Fig. 1a) has very little effect. This is location problem discussed in the
introduction section.

- The term containing parameters αu and ζu is multiplied with q, which means the
DVA moving in normal direction (Fig. 1b) only works in the nonlinear zone

3.3. Numerical verifications
In the numerical calculation, the results are obtained by solving the original dif-

ferential equations (8). The total time of each simulation is 500 s. In the analytical ap-
proximation, the results are obtained by solving the cubic equation (19). Some cases of
system parameters used in simulation are summarized in Tab. 1. In all cases, the struc-
tural damping ratio ζs is taken as 1%, the mass ratios µu = µv = 0.05 and the location
parameters γu = 1.3, γv = 0.8.

The pendulum vibration amplitudes are plotted versus the frequency of single har-
monic excitation. The comparisons are showed in Figs. 3-7.

In the numerical calculation, the results are obtained by solving the original differential equations 
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max mq


  
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u  

1 3.6 1 0.05 0.05 25
o
 0.4445 0.4317 

2 4 1 0.05 0.05 25
o
 0.3848 0.3617 

3 4.5 1 0.05 0.05 25
o
 0.4425 0.4525 

v  

4 4 0.9 0.06 0.05 25
o
 0.4571 0.4258 

5 4 1 0.06 0.05 25
o
 0.3885 0.3717 

6 4 1.1 0.06 0.05 25
o
 0.4819 0.4499 

u  

7 4 1 0.005 0.04 25
o
 0.4328 0.3791 

8 4 1 0.05 0.04 25
o
 0.3616 0.3451 

9 4 1 0.5 0.04 25
o
 0.4072 0.4109 

v  

10 4 1 0.04 0.02 25
o
 0.4139 0.3761 

11 4 1 0.04 0.04 25
o
 0.3642 0.3424 

12 4 1 0.04 0.1 25
o
 0.4481 0.4 

m  

13 4 1 0.04 0.04 15
o
 0.3905 0.3767 

14 4 1 0.04 0.04 25
o
 0.3642 0.3424 

15 4 1 0.04 0.04 35
o
 0.3459 0.3218 

The pendulum vibration amplitudes are plotted versus the frequency of single harmonic excitation. 

The comparisons are showed in Figs. 3-7. 
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The pendulum vibration amplitudes are plotted versus the frequency of single harmonic excitation. 

The comparisons are showed in Figs. 3-7. 
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Fig. 3. Frequency response when αu changes (cases are mentioned in Tab. 1)
(a) Simulated response, (b) Analytical response
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Table 1. Cases used in numerical simulations

Parameter
Case αu αv ζu ζv θm

max
β

√
q
/

θm max
β

√
q
/

θm

changed (Simulated) (Analytical)

αu

1 3.6 1 0.05 0.05 25◦ 0.4445 0.4317
2 4 1 0.05 0.05 25◦ 0.3848 0.3617
3 4.5 1 0.05 0.05 25◦ 0.4425 0.4525

αv

4 4 0.9 0.06 0.05 25◦ 0.4571 0.4258
5 4 1 0.06 0.05 25◦ 0.3885 0.3717
6 4 1.1 0.06 0.05 25◦ 0.4819 0.4499

ζu

7 4 1 0.005 0.04 25◦ 0.4328 0.3791
8 4 1 0.05 0.04 25◦ 0.3616 0.3451
9 4 1 0.5 0.04 25◦ 0.4072 0.4109

ζv

10 4 1 0.04 0.02 25◦ 0.4139 0.3761
11 4 1 0.04 0.04 25◦ 0.3642 0.3424
12 4 1 0.04 0.1 25◦ 0.4481 0.4

θm

13 4 1 0.04 0.04 15◦ 0.3905 0.3767
14 4 1 0.04 0.04 25◦ 0.3642 0.3424
15 4 1 0.04 0.04 35◦ 0.3459 0.3218

Fig.3. Frequency response when u changes (cases are mentioned in Table 1) 

(a): Simulated response, (b): Analytical response 
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Fig.4. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.5. Frequency response when u changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.6. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.4. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 

0.1

0.2

0.3

0.4

0.8 0.9 1 1.1 1.2


q
1

/2
/ 

m

Case 7 Case 8 Case 9

0.1

0.2

0.3

0.4

0.8 0.9 1 1.1 1.2


q
1

/2
/ 

m

Case 7 Case 8 Case 9

 
(a)       (b) 

Fig.5. Frequency response when u changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.6. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 

(b)

Fig. 4. Frequency response when αv changes (cases are mentioned in Tab. 1), labels as Fig. 3

Some remarks are drawn from the comparisons:
- The errors between the numerical and analytical calculations are generally ac-

ceptable. In some cases (cases 7, 10, 12), the errors can be larger because of the effect of
nonlinearity. It can be explained as follows. In cases 7, 10 or 12, too small values of the
damping ratios ζu, ζv or too large value of the damping ratio ζv make the larger value
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Fig.3. Frequency response when u changes (cases are mentioned in Table 1) 

(a): Simulated response, (b): Analytical response 
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Fig.4. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.5. Frequency response when u changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.4. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.5. Frequency response when u changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.6. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig. 5. Frequency response when ζu changes (cases are mentioned in Tab. 1), labels as Fig. 3
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Fig.4. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.5. Frequency response when u changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.4. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.5. Frequency response when u changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig.6. Frequency response when v changes (cases are mentioned in Table 1), labels as Fig. 3 
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Fig. 6. Frequency response when ζv changes (cases are mentioned in Tab. 1), labels as Fig. 3
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Fig.7. Frequency response when m changes (cases are mentioned in Table 1), labels as Fig. 3 

 

Some remarks are drawn from the comparisons: 

- The errors between the numerical and analytical calculations are generally acceptable. In some 

cases (cases 7, 10, 12), the errors can be larger because of the effect of nonlinearity. It can be 

explained as follows. In cases 7, 10 or 12, too small values of the damping ratios u, v or too large 

value of the damping ratio v make the larger value of 
uz  to absorb the vibrational energy. The 

larger value of velocity 
uz  can decrease the accuracy of the effective damping (12). 

- The DVA’s damping ratios u and v should be not too large or too small (Figs. 5, 6). 

- The optimal value of v is around 1 (Fig. 3) while the optimal value of u is around 4 (Fig. 4) 

- The DVA effectiveness increases when the excitation increases (Fig. 7). This effect is the main 

difference between the linear and nonlinear systems. 

4. Conclusion 

This paper considers the vibration control problem of a pendulum attached with two orthogonal 

dynamic vibration absorbers (DVAs). The equivalent linearization technique is used to obtain the 

analytical form of the frequency response. Some fundamental natures of two DVAs are seen from 

the analytical solution. The optimal frequency ratios in tangential and normal directions should be 

near 1 and 4 respectively. The damping ratios should not be too large or small. The DVA in 

tangential direction meets a location problem while the DVA in normal direction only works in the 

nonlinear zone. All the aforementioned natures are verified by numerical simulations of harmonic 

vibration of a pendulum. 
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Fig.7. Frequency response when m changes (cases are mentioned in Table 1), labels as Fig. 3 
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of żu to absorb the vibrational energy. The larger value of velocity żu can decrease the
accuracy of the effective damping (12).

- The DVA’s damping ratios ζu and ζv should be not too large or too small (Figs. 5
and 6).

- The optimal value of αv is around 1 (Fig. 3) while the optimal value of αu is around
4 (Fig. 4)

- The DVA effectiveness increases when the excitation increases (Fig. 7). This effect
is the main difference between the linear and nonlinear systems.

4. CONCLUSION

This paper considers the vibration control problem of a pendulum attached with
two orthogonal dynamic vibration absorbers (DVAs). The equivalent linearization tech-
nique is used to obtain the analytical form of the frequency response. Some fundamental
natures of two DVAs are seen from the analytical solution. The optimal frequency ratios
in tangential and normal directions should be near 1 and 4 respectively. The damping
ratios should not be too large or small. The DVA in tangential direction meets a location
problem while the DVA in normal direction only works in the nonlinear zone. All the
aforementioned natures are verified by numerical simulations of harmonic vibration of a
pendulum.
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