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Abstract. In this paper, the buckling and post-buckling behaviors of eccentrically stiff-
ened functionally graded material (ES-FGM) plates on elastic foundations subjected to
in-plane compressive loads or thermal loads are investigated by an analytical solution.
The novelty of this work is that FGM plates are reinforced by FGM stiffeners and the
temperature, stiffener, foundation are considered. The first-order shear deformation plate
theory is used. The thermal elements of plate and stiffeners in fundamental equations
are introduced. Theoretical formulations based on the smeared stiffeners technique and
the first-order shear deformation plate theory, are derived. The analytical expressions to
determine the static critical buckling load and post-buckling load-deflection curves are
obtained.

Keywords: Stiffened plates, nonlinear analysis, functionally graded material (FGM), ther-
mal environment, elastic foundation.

1. INTRODUCTION

Stiffened plates are structural components consisting of plates reinforced by a sys-
tem of stiffeners to enhance their load carrying capacities. Stiffened plates nowadays are
widely used in modern industry, such as ships, bridges, tank roofs, vehicles, etc. Many
researches have been published regarding stiffened plates. Analysis of linear buckling
of stiffened plates by the orthotropic plate method may be found in Timoshenko and
Gere [1]. The elastic buckling and post-buckling behavior of eccentrically stiffened plate
are evaluated analytically by Steen [2] using the simplified direct energy approach to-
gether with Marguerre’s plate theory. Influence of stiffener location on the stability of
stiffened plates under compression and in-plane bending is studied by Bedair [3].

For un-stiffened plates without foundation, many studies have been focused on the
buckling behavior analysis under mechanical and thermal loading. Reddy [4] presented
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the finite element formulation for linear and nonlinear thermo-mechanical bending re-
sponse of plates made up of functionally graded material (FGM) using higher order shear
deformation theory (HSDT). Lanhe [5] presented an analytical solution for the thermal
buckling of FGM rectangular simply supported plate subjected to uniform temperature
rise and gradient through the thickness of plate, using FSDT. The results on the nonlin-
ear analysis of stability for functionally graded un-stiffened plates under mechanical and
thermal loads using the classical plate theory (CPT) have been considered by Tung and
Duc [6]. Achchhe Lal et al. [7] examined the second order statistics of post-buckling re-
sponse of functionally graded materials plate subjected to mechanical and thermal load-
ing with nonuniform temperature changes subjected to temperature independent and
dependent material properties using HSDT with von-Karman nonlinear kinematic.

For plates resting on elastic foundations, many significant results on the buckling
and post-buckling are obtained. Duc and Tung [8] presents an analytical investigation
on the buckling and post-buckling behaviors of thick FGM un-stiffened plates resting on
elastic foundations under in-plane compressive, thermal and thermomechanical loads
based on HSDT taking into account Von Karman nonlinearity. Kiani and Eslami [9] stud-
ied analytically the buckling of heated functionally graded material annular plates on
Pasternak-type elastic foundation based on the CPT. Naderi et al. [10] presented an exact
analytical solution for buckling analysis of moderately thick functionally graded sector
plates resting on Winkler elastic foundation according to FSDT.

As can be seen that the above introduced works only relate to un-stiffened FGM
structures. Recently, Najafizadeh et al. [11] with the stability equation given in terms
of displacement investigated the mechanical buckling behavior of FGM stiffened cylin-
drical shells reinforced by rings and stringers based on the classical shell theory. The
stiffeners and skin are assumed to be made of FGM and its properties vary continuously
through the thickness. Bich et al. [12,13] investigated the nonlinear static buckling behav-
ior of eccentrically stiffened imperfect FGM plates and shallow shells and the nonlinear
dynamic response of eccentrically stiffened FGM imperfect panels and doubly curved
thin shallow shells on the basis of the classical plate and shell theory. Stiffeners in these
researches are assumed to be homogenous. The results on the static nonlinear buckling
and post-buckling analysis of eccentrically stiffened FGM circular cylindrical shells un-
der external pressure or torsional load are obtained Dung and Hoa [14,15], whereas the
material properties of shell and stiffeners are assumed to be continuously graded in the
thickness direction. Dung and Nam [16] presented nonlinear dynamic analysis of ec-
centrically stiffened functionally graded circular cylindrical thin shells surrounded by an
elastic medium. Dung et al. [17] investigated the stability of functionally graded trun-
cated conical shells surrounded by an elastic medium. Shells are reinforced by stringers
and rings in which material properties of shell and stiffeners are graded in the thickness
direction according to a volume fraction power-law distribution.

Recently, Duc et. al. [18,19] investigated the nonlinear post-buckling of imperfect
eccentrically stiffened thin FGM plates and FGM double curved thin shallow shells on
elastic foundation in thermal environments with temperature-dependent material prop-
erties based on the classical plate theory and the classical shell theory, respectively. Dung
and Hoa [20] presented the nonlinear buckling and post-buckling of functionally graded
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stiffened thin circular cylindrical shells under torsional load surrounded by elastic foun-
dations in thermal environments based on the classical shell theory. The elastic medium
in these articles is assumed as two-parameter elastic foundation model proposed by
Pasternak.

In this paper, the buckling and post-buckling behaviors of eccentrically stiffened
functionally graded material (ES-FGM) plates on elastic foundations subjected to in-
plane compressive loads or thermal loads are investigated by an analytical. We focus
on three highlights as follows:

- FGM plates are reinforced by FGM stiffeners.

- The thermal element of stiffeners in N;jj, M;; is taken into account.

- The unknown functions ¢, and ¢, are chosen in the form of two terms, so we only
need to apply Galerkin method one time for one resulting equation.

Three kinds of loads, namely, in-plane compressive, thermal and thermomechan-
ical are considered. Theoretical formulations based on the smeared stiffeners technique
and the first-order shear deformation plate theory, are derived. The analytical expres-
sions to determine the static critical buckling load and analyze the post-buckling load-
deflection curves are obtained. The effects of thermal element, stiffeners, foundation,
geometrical and material parameters are shown.

2. THEORETICAL DERIVATIONS

2.1. Functionally graded materials

Consider an eccentrically stiffened functionally graded (ES-FGM) rectangular plate
of length a, width b, and uniform thickness h resting on elastic foundations shown in
Fig. 1. The plate is referred to Descartes coordinate system (x,y,z) in which the plane
Oxy coincides with the un-deformed middle surface of the plate and the axis 0z is in the
thickness direction (—h/2 < z < h/2). The functionally graded material of plates is
assumed to be varied continuously in the thickness direction and made from a mixture
of ceramic and metal with the volume-fractions given by a power-law distribution as

1 k
Vo+ V=1, VC:VC(z)=(2+2), (1)

where k > 0is the volume fraction exponent, and the subscripts m and c refer to the metal
and ceramic constituents, respectively.
Effective properties Pr, s of FGM plate are determined by linear rule of mixtures as

Prosr = PryVin(z) + Pr.V.(z), )

where Pr;;, Pr. are temperature-independent material properties of metal and ceramic
constituent, respectively.

According to the mentioned law, Young’s modulus, thermal expansion coefficient
and thermal conductivity coefficient of FGM plate are of the form
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k
z 1
E(z) = EnVin + EcVe = En + (Ec = En) <h + 2) ,

k
a(z) = am Vi +acVe = ay + (0 — ay) <h + 2> , 3)

k
z 1
K(z) = KnVin + KeVe = Ko+ (Ke = Ki) (h + 2) ,

and Young’s moduli, thermal expansion coefficients of FGM stiffeners are given by
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where k; > 0,k3 > 0 are the volume fraction exponents; Esy(z), Esy(z) and a1(z), a2(z)
are Young’s moduli, and thermal expansion coefficients of x-direction and y-direction

stiffeners, respectively.
The Poisson’s ratio, in this work, is assumed to be a constant.
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Fig. 1. Configuration of an eccentrically stiffened plate on elastic foundations
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2.2. Basic relations and governing equations

Denote u, v, w being the displacement components of the mid-plane of the plate in
x, Y,z directions respectively, and ¢, ¢, are the rotations of a transverse normal about the
y- and x-axes, respectively.

According to the first order shear deformation plate theory and geometrical nonlin-
earity in von Karman sense, the strain components across the plate thickness at a distance
z from the mid-plane are [5]

ex € K
ey | = €§, +z| Ky |, ®)
ny ’)’xy ny
Yxz | _ ’)’22 ] | Wyt Py
- 0 - ’ (6)
')’yz r)’yz ] w,y + ¢y
where
8% U+ %w,zx 1 Kx Py x
YT Uyt Wy / Ky | = Pyy , )
’)’xy Uy +0y+ WxW,y | Kxy ¢x,y + (Py,x

in which ¢y, &, are normal strains, <y, is the in-plane shear strain and 7,., . are the
transverse shear deformations.

Using the relations (7), the geometric compatibility equation of plate is represented
in the form

0 0 0 _ 2
sx,yy + Sy,xx - ’)’xy,xy - w,xy = WxxW,yy- (8)

The stress-strain relations taking into account the temperature for plate, are defined
by Hooke’s law as

(0f,0)) = Tz L(exey) v (e e)] - f(_‘z?/a(z)AT(Ln, AT=T-T,

©)
E(z
(008 e) = 32 (e ).
and for stiffeners taking into account the temperature [21]

0y = Esx(z)ex — Esx(2)a1(2)AT, 0y = Esy(2)ey — Esy(2)a2(z)AT,

g.

10
vz = Gox(2) Yz U;z = Gsy(z)'YyZ' "

“"__ 1

where the superscripts “p” and denote plate and stiffener respectively; Gsy, Gsy, are
shear moduli of x-direction and y-direction stiffeners, respectively.

Taking into account the contribution of stiffeners by the smeared stiffeners tech-
nique and omitting the twist of stiffeners and integrating the above stress-strain equa-
tions and their moments through the thickness of the plate, we obtain the expressions
for force, moment resultants and transverse shear force resultants of ES-FGM plate in

“”_rm
S
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thermal environment, as

Eisb
Nx = (All + 1dsl 1) 59{ + A12€8 + (Bll + Cl) 47x,x + BlZ‘Py,y - 47m - (me/

Ny = Aped + <A22 + E;’?) &)+ Biody + (B + C2) Py — P — Py (11)
Ny = AeVay + Beo (dxy + dyx)
My = (Bj1 +Cy) & + 31283 + <D11 + E(s;fl) ¢xx + D12¢yy — Po — Pox,s
My = Buoe} + (B2 + C2) €y + <D22 + EZF) Guy+ Dot — 9y — by, 1
My = B66')’2y + Des (¢xy + Py x) s

Qr = AuawWx + Asapx, 13)

Qy = Assw,y + Assy,
where the coefficients Ajj, Bij, Djj and the expressions ¢u, G, Pmy, Pv, Pvx, Ppy are defined
in Appendix I.

The relations (11) and (12) are the most significant contribution found in this work
in which the thermal elements in plate and stiffeners in equations of Nj; and M;; are
considered.

The strain-force resultant relations are obtained reversely from Eq. (11)

ey = ApNx — ANy — Biyrx — Biodyy + (A — Ay) P + Asanx — Alppmy,
58 = ATlNy — ANy — B3y x — Bézfpy,y + (Af) — ALy) ¢m + ATl(Pmy — ADPmx,  (14)
’Y?cy = AgsNxy — Bgg (‘Px,y + ‘Py,X) .
Substituting Eq. (14) into Eq. (12) yields
M, =By Nx+B;, Ny+DT14’x,x+D>1k2¢y,y+ (Bi1+B21) ¢m +BT14’mx+B§14’my —Po—Pox,s
My = BTZNX+B>2kzNy+D>2k]4’x,x+D>2kz¢y,y+ (BT2+B§2) 4’m+BT2¢mx+B>2kZ¢my _4’b _‘Pbyr (15)
M.y = BNy + Dgg (¢ + ¢yx)
where the coefficients Aj;, B; and Dj; are given in Appendix IL

The nonlinear equilibrium equations of a perfect FGM plate on elastic foundations
based on the first order shear deformation theory are [5,22]

Nyx + Nyyy =0, (16)

Nyyx + Nyy =0, (17)

Qux + Quy + Nxt xx + 2Nyy@0 vy + Nyt yy + 4 — Kjw + Kz (Wx + wyy) =0, (18)
M x + Mxy,y —Qx=0, (19)

Mxy,x + My,y - Qy =0, (20)

where g is an uniform transversal force, K; (N/ m3) is Winkler foundation modulus and
K>(N/m) is the shear layer foundation stiffness of Pasternak model.
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By putting
Nx — f,yy/ Ny — f,xx/ ny — _f,xy/ (21)

it is easy to see that the first two equations (16) and (17) are automatically satisfied, and
three resting equations become

Mx,xx +2Mxy,xy +My,yy +f,yyw,xx _Zf,xyw,xy +f,xxw,yy +q —Kijw+Kp (w,xx +w,yy) =0,
Mx,x + Mxy,y —Qx=0,
Miyx + Myy — Qy = 0.
(22)
Substituting the expressions of M;; from Eq. (15) and Qy, Qy from (13) into Eq. (22), we
obtain

. o . . oy 0 . 0 L0
leﬁ + (Bi1 + By — 2Bge) angyz + Blzay{ + Dny 84;"+
83 83 82 aZ
+ (D +2Dg) 2 1 (g, +2Dgg) L 4 pp P00 PEPW

929y avay2 T P2 T g o

Pf Pw | PfPw Pw  Pw
a 28x8y dxay o 2 A <8x2 * 8y2> =0

* 83 * * 83 X * * 24) 82 X aw
Bz1axj3r+(311—366) axaj;z +D1; a(P +(D1,+Dgg) e a]y/+D66 8;; 1‘\44a —Apu =0,
(24)
a3f * * a3f ‘Py * * az(l)x ¢y ow
Bi==3 e + (B3, —Bge) ayax 2+D22 32 + (D3 +Dgs) Y ay+D66 ) —Ass—— 3y — Ass¢y =0.
(25)

The three coupled equations (23), (24) and (25) include four unknown functions w, ¢», ¢,
and f so it is necessary to find a fourth equation relating to these functions by using the
compatibility equation (8). For this aim, substituting the expressions of Eq. (14) into Eq.
(8), one can write as

i

. TN , ot , 0 0
1lax4+(A66—2A12)f+A J—Bm P Px

ox2oy? 22 gyt o~ (B~ Bee) 552 x>

L P, Po, [ Pw\® | FPwdw
_(BZZ_B66)882_B128 9x0 ox2 012
yox Y xoy x= oy

+
(26)
=0.

For initial imperfect ES-FGM plates: The initial imperfection of the plate considered
here can be seen as a small deviation of the plate middle surface from the perfect shape
and assume that it is very small compared with the thickness of the plate. Let w* =
w*(x,y) is a known function representing initial imperfection of the plate. Two equations
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(23) and (26) are modified into form as

* 84 * * * 84 * 84 * 83 X 34)
321874 + (Biy + B3, — 2Bgg) E)ZE{]/Z + Blzay{: + D1187;P3 + (D12 +2Dgg) 3 2ayy
P P, P (Pw | P 2f (Pw  Pw
+ (D2 +2Ds) 555+ Dngs + 50 ax2 9 ) %axay \axay T axay
0 f w  w* Pw  Pw
+axz<ay2+ay >—|—6] K1W+K2(ax2+ay2>—0/
(27)
* a4f * a4f a4f a3¢x * * a3¢x * 3¢y
15,4 (A66_2A12)a 29,2 +Azzay4 lew—( 1n— 66)W_( 2~ Bgs )ayaxz
Ly [ Pw Fwdw 5 *w ?w* N 0%w o*w* N *w *w* 0
12943 dxdy 9x2 9y2  “Oxdyodxdy = oxZ dy?  9y? 9x2
(28)
and two Egs. (24) and (25) are unchanged as
83 * * 33 X * * qj aZ X a
B218 J;+(Bll_B66) axaj;z +D1y a(P +(D1y+Dgs) Y a;j/+D66 a;; 1‘144a —Agpr=
(29)
* aS * * 83f (P * * az(Px ¢ a
Blzaiy;g"i_(BZZ_B%) ayox 2+D22 ayy+(D21+D66) Y ay+D66 axzy As5—— 3y — Asspy =0.
(30)

Egs. (23) + (26) or (27) + (30) are nonlinear equations in terms of four unknown functions
w, ¢y, ¢y and f and are used to investigate the buckling and post-buckling of perfect or
imperfect eccentrically stiffened functionally graded (ES-FGM) plates subjected to me-
chanical load, thermal load or combined thermo-mechanical loads. It is obvious that this
system of equations is more complicated than the one established by using the classical
plate theory. This is also the main reason why the nonlinear stability analysis of stiffened
FGM plate based on FSDT is much more complicated than nonlinear stability analysis of
stiffened FGM plate based on CPT (there are only two nonlinear equations).

3. BOUNDARY CONDITIONS AND PROCEDURE OF THE SOLUTION

Suppose that three cases of boundary conditions for an imperfect ES-FGM plate
will be considered [8]
Case (1). Four edges of plate are simply supported and freely movable (FM) i.e.

w=¢y =Ny =My=0, Ny=Ny at x=0,4,

Case (2). Four edges of plate are simply supported and immovable (IM) i.e.
w=u=¢, =My =0, Ny=Ny at x=0,q, 32)

w=v=¢, =M, =0, N,=Ny at y=0,b.
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Case (3). The edges of plate are simply supported. Uniaxial edge loads are ap-
plied in the direction of the x-coordinate. The edges x = 0, x = a are considered freely
movable, the remaining two edges being unloaded and immovable. The boundary con-
ditions, for this case, are

w:(l)y:ny:Mx:O, Nx:NxO at x:O,a,
w=v=¢ =M, =0, N,=Ny at y=0,b.

where Nyo, Ny are pre-buckling force resultants in the direction x and y respectively, for
case (1) and the first of case (3), and they are fictitious compressive edge loads rendering
the edges immovable for case (2) and the second of case (3).

The analytical solution of the system of Eqgs. (27) =+ (30) satisfying the boundary
conditions exactly for w and on average sense for ¢, ¢, can be found in the form [23]

(33)

w = W sinax sin By, w* = ¢hsinax sin By,
¢x = P10 cos ax sin By + P11 sin 2ax, P, = Poo sin ax cos By + ¢21 sin 2By,
1 1
f = f1cos2ax + frcos2By + f3sinaxsin By + ENxoy2 + ENyoxz, (34)

where v = 1, 8 = % and m, n are numbers of half waves in x and y directions, respec-

tively, and the coefficient ¢ € [0, 1] is an imperfection size of plate.
Substituting Eq. (34) into Egs. (28), (29) and (30) and carrying out some calcula-
tions, yield
f1 = L. W. (W + 26]/1) , f2 = L,.W. (W + 2@]’1) ,f3 = L3.W, (35)
and
P10 = Ly W, P20 = Ls.W, ¢11 = Le¢.W. (W + 26]1) , P01 = Ly W. (W + Zéh) , (36)

where the coefficientsL; are defined in Appendix III
Substituting the expression (34) into Eq. (27) and applying Galerkin’s method for
resulting equation, we obtain

[(16a4B;1L1 +168*Bj,Ly — 8a°D;, Ls — 88°Di,Ly) W. (W + 22h) +

3aBab
+{ [«*B3y + a6 (Biy + B3, — 2B46) + B'Bia | Lo + [+°Dfy +ap? (D, +2D)] Lu+
+ [B°D3; +a2 (Dio+2D5e)] Ls— Ky — (a*+57) Ko} W
1600,

— (a®Nyo + B*Nyo) . (W + ¢h) + ¢ wpab 0,

—202B*Ls.W. (W + &h) } ( ) —202B% (Ly + L) W. (W + &h) . (W + 2¢h) +

(37)
1—(=1)" 1—(-1)"
— = ———.
Nonlinear Eq. (37) is used to determine buckling loads and load-deflection post-

buckling curves of imperfect ES-FGM plates subjected to mechanical compressive loads,
thermal and combined loads and on elastic foundations.

in which é,,, =
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4. BUCKLING AND POST-BUCKLING ANALYSIS

4.1. Mechanical stability analysis

Consider a rectangular imperfect ES-FGM plate being simply supported at its edges
and freely movable (Case (1)) and subjected to the in-plane compressive loads Py and P,
uniformly distributed along the edges x = 0,aandy = 0,b respectively

If g = 0,Nyo = —hPy,Nyo = —hP, and putting A = %, W = h , Eq. (37) leads to
the explicit relation ,

-1
hi(a? +A2)
1616,10

- 2TV (et ) 2B+ L. (W +28)

+ { [#*B3y + o®B2(Biy + By, — 2Big) + B'Bi| Ls + [° Dy +ap* (D, +2D5)] Ly

W. (W +2¢)

Py = L
W+¢

{ [(16a4B;1L1 +16B*Bl, Ly — 843Dy Ls — 88° DLy ).

+ [B’D3, + a*B(D7, +2D¢)] Ls — K1 — (o + B*)Ka } W }

W+ ¢
(38)
For a perfect ES-FGM plate, ¢ = 0, Eq. (38) becomes
-1 * * * *
P ) { (16a4321L1 +16B*B}, Ly — 84°D};Le — 88°Diy Ly

—16h6,,0,\ _
—262f%Ls) (w) W — 202B3(Ly + Lo) iAW

+ B3y + 2B (Biy + By — 2Big) + BB Ls + [+°Di

+ap® (D31 +2Dge)] La + [B°D3y +a?B(Di +2D56)| Ls — Ky — (& + B)K: .
(39)
Taking W — 0, Eq. (39) gives the upper buckling load for a perfect ES-FGM plate

1 [a*B3) + 04;[32*(81‘1 + B3, —2Bg,) + B} Ls
b= @A [ + [«°Dy; +ap? (D3 +2Dg)] Ly (40)

+[B°Dj, +a®B (Diy +2Dg )] Ls — Ky — (a? + ) Ky

Similarly, the upper static buckling load for ES-FGM plate based on the CPT, with-
out foundation and only subjected to mechanical loads, can be determined [12, Eq. 36]

2| Dim*+ Dyt :+(Dj, + D3, +4Dgg) m m*n?%
Py upper = 2a2h n (B21m +(Bi; B3, —2Bg )m*n? Iy +B{2n4;‘4> . (41)

Ayt (Age—2A%, ) m2n2 5 + Agynd

4.2. Thermal stability analysis

Suppose that an imperfect ES-FGM plate on elastic foundations is a simple sup-
ported with immovable edges (Case (2)). So the condition expressing the immovable on
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theedgesu =0atx =0, x =aand v = 0 aty = 0,y = b is fulfilled on the average sense
as [24,25]
b a a b 5
// ——dxdy = // —vdydx =0. (42)
ox ay
0 00
From the relations (7) and (14) we obtain the following equations

1

U =Apfyy— Al fax—Bl1¢xx—Bladyy+ (An—Al) Pm+ Ay Pmx— A Pmy — Ew?"x —W W,
1

0y = AT fax— Al fyy —Bo1@xx = By y + (AT — ATy) G+ ATy Py — ATpPmx— Ew?y —Wywy,.

(43)
Substituting expressions of (34) into Eq. (43), and then into the conditions (42), gives us

Nxo = [ﬁ2L3 —aA (AfBiy + AlyBy) Ly — BA (A1 BY, + ATpB5y) Ls| W < - n)

aPab
A * *
+ g (@A + B AL) W (W +28h) = fn — P,
(44)
Nyo = [a’Ls — aA (A},B}) + A3B3;) Ly — BA (A7, Bi, + A5B3y) Ls| W ( oc[ﬂma};l)
A * *
T3 (e A, + B*As) W (W + 28h) — i — Py
Introducing the relation (44) into Eq. (37), and g = 0, we get
W. (W +2¢h)
(62 + B7) o + 0% + B Py = ( WAV 4+ 26%) ) < )
+¢h (45)

W 4
W +¢h 2=t —t) W ( aﬁab)

+ (t3 -+ t30) W. (W + 26[’1) — 1y

where
t; = 16a*B3, Ly + 168*Bj, Ly — 8a°Dj Ls — 88° D3, L7,
ty = 20°B?Ls, t3 = 20%B* (L1 + L),
to= |03y +a’” (Biy + B —2Bjs) + BBl | La + [a°Diy +wp? (Djy +2Dig)] Ls
+ [B°D3, +a%B (D +2Dg)] Ls — Ki — (4% + %) Ko,
A * * *
3 <“4A11 + 2022 A, +54A22) ,
20 = oA [(a®Afy + B AR) Biy + (0 Afy + B2A3,) B3y Ly,
th = BA [(/*Afy + B*AL,) Biy + (0*Afy + B*A3,) B3] Ls.

t30 =

(46)
The equation (45) shows the explicit relationship of temperature-deflection of an
imperfect ES-FGM plate on elastic foundations under thermal load.
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4.2.1. Uniform temperature rise

In this case, the FGM plate is exposed to temperature environment uniformly raised
from initial value T; to final one Ty and AT = Ty — T; is a constant. Then the thermal pa-
rameters ¢y, Gy, cpmy are given as

h.AT
= P
Pm =100
b1y Enem + Ecmtm Ecmttem 0
— AT = AT,
Pmx =" {E'”“m Tl T2kt P (47)
b2h2 Em‘xcm + Ecmfxm Ecmfxcm 0
— AT = AT
where E L E E
. m&cm cm®m cm®cm
P=Entn + =775 2k+1
bih Entem + Ecmax Ecma
0 171 mbtcm cmWm cm%cm
= ——|E ’
P dq ( e ko+1 2ky + 1> (48)
(PO _ b2h2 E Emlxcm + Ecmlxm Ecmlxcm
my ds e k3—|—1 2k3—|—1 )
— W
Combining Eq. (45) with Eq. (47) and putting W = 7 leads to
( - 3
W.(W+2 — (16hd,,0
[tlg_tz.W] ( S ”)
W+E& 3uBab
AT = ! + (t3 + tao) W2 W. (W +2¢) — ¢ W
h(ﬂéz—i—ﬁz) ) 10 ) 0 3 30 VYV 4W+é,
— P+ atpp, + B, [ 4hs, S
1=v + (ta —tao — t21) W —
L aPab
_ (49)
If the imperfection { = 0 and W — 0, Eq. (49) gives us
[a*B3; +a®B? (Bj; + B3, — 2Bgg) + B*Bi,] Ls
AT — — L+ FDin 008 (Dip £ 2D5)] Ls =K = (o4 ) Ko (50)
h (DC + ‘B ) 240 2 40
P+ 020 + B0,

4.2.2. Nonlinear temperature change across the thickness

Assume that the temperature through thickness is governed by the one-dimensional
Fourier equation of steady-state heat conduction

d aT
% |:K (Z) dZ:| = 01 T |Z:h/2 = TC/ T ‘z:—h/Z = Tm, (51)
where T;;, and T, are temperatures at metal-rich and ceramic-rich surfaces, respectively.

By solving Eq. (51) with mentioned boundary conditions, the solution for temperature
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distribution across the plate thickness is obtained

_ n kn+1
T () G )"
T(z) = T + AT T , (52)
£ ()

in which AT =T, — Ty,.

In only this subsection, we consider homogenous stiffeners, by following the same
procedure as in the subsection 4.2.1, the expressions of the thermal parameter, in this
case, are

AT b b
pu=1——H = éEsxalAT.Hx, Py = i Esy2AT.Hy, (53)

and

W.(WH2¢ 77 [ 161600 (T W 7 [ 4hd oy
AT [t 7%% ) —ty. W] (Tﬁab )+(t3+t30)h2.w. (W+2§)—t4m+(t2—t20—t21) W (Tﬁub )

7

062+‘Bz H+ DCZElelebl Hx ,B Esyo‘ZbZ Hy

j =
(54)
where
Esx = Esy = Em, 01 = a2 = aty,
o 1 Kow \P 7, ( Enmat Epttem+Ecnt Eoptt
. m cmicnm
Lo () (Bt + Bt + i)
- o 1 K ’
£ o ()
kp+2
£ o () () ()

4.2.3. Thermomechanical stability analysis

Consider an imperfect ES-FGM plate simultaneously acted by a thermal field and
an uniaxial compressive loading Py, uniformly distributed along the edges x = 0 and
x = a. Suppose that the plate is simply supported with movable edges x = 0,2 and
immovable y = 0, b (Case (3)). Employing Nyg = —Pyh and the second of Eqs. (43), (44),
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we obtain
—A¥ 1 . . . . 46,,0
11 11 apab
2 12 12
W+28)—(1-— —= - .
g W OV+20) = (1272 ot G
Substituting expressions of Nyg = —Pyh and Ny, taking into account the expressions of
G, Pmx,Pmy in (47), yields
H W. (W +2¢) — (16h3,,0 —
P, = 1 { — =/ _H W ( ’””>+t.h2.w. W+2
Y Th (oczAi‘1 + ﬁZA’{Z) [t W+¢ ] 3uBab 3 ( 6)

- 4 - ZA*
YW <4h‘5m5”> L P e (W+2¢) + [ﬁ 2 0

W+¢ apab ) " 8A}, A%
Az hP 1 166,,0
240 _ 2 _ M2 _ mPn
Fat (1 Aﬁ) 1|81 Wit (o) |
(57)
where )
ts B [(B*Aj, — a®A}}) Ls + aB3 Ly + BBjyLs) . (58)

A7y
Eq. (57) is employed to trace postbuckling load-deflection curves of the imper-
fect ES-FGM plates subjected to the combined mechanical and thermal loads. Besides,
it is used to determine the dependence of the in-plane compressive edge loads vs. total
deflection (for given uniform temperature rise).

5. CONCLUSIONS

This paper investigates the nonlinear post-buckling analysis of imperfect FGM
plates reinforced by FGM stiffeners on elastic foundations subjected to in-plane com-
pressive mechanical loads or thermal loads, or thermo-mechanical loads simultaneously
by analytical approach. The material properties of plate and stiffeners are graded in the
thickness direction according to a volume fraction power-law distribution. Based on the
tirst order shear deformation theory with the kinematic nonlinearity and taking into ac-
count shear deformation of stiffener, temperature and Pasternak elastic foundation, the
couple set of four nonlinear stability equations for functionally graded plates are derived.
By applying Galerkin’s method, the closed-form expressions for determining the buck-
ling load and post-buckling load-deflection curves are obtained. The relations (11) and
(12) are most important relations found in this work in which the thermal elements in
plate and stiffeners in equations of N;; and M;; are considered. The effects of temper-
ature, stiffener, material properties, geometrical parameters and foundation parameters
will be analyzed in detail in the next part of the paper.
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APPENDIX I
An = Ap = %, Ay = %f Ape = 2(1E_1H/),
Ay =x1 {2(1]541_ ) + G;slbl] , Ass = X2 [2(1]5_1 ) + Gzirzbz , X1=x2=>5/6,
Bi1 =By = 15721/2, B, = %, By, = %, B = 2(1E_2H/),
D1y =Dy = %f Dy = 1E_iv2, Dee = 2(1Ej_v),
G R ==
Fa = ﬁ; (Ec = Ew) <k11L3 - lerz * 4k1+4>] ”,
Eis = Ehy + Eqi k2h_|1_1,

B hy(h+ hy) h2 hih
EZs - _Emiz Ecm k2—|—2 +2k2—|—2 7

1 3 h2h hih?
- hih? + 6h2h + 4h3) + E 1 1 ! ,
Ess 12Em(31 + 6hth +4h3) + cm<k2+3+k2+2 I, 14
h
Elr - Emh2+Ecm7k3j_1/

. hz(h—l—hz) h% hoh
EZr—_Em > Ecm k3+2+2k3—|—2 7

H

Es = = E, (3hah® + 613h + 4h) + E L I
3r—12 " 2 2 2 e k3—|—3 k3—|—2 4k3—|—4 !
_ Exby _ Exb
C = R G = 5

where hy, by and hy, by are the thickness and width of the longitudinal and transversal
stiffeners, respectively; d; and d; are the distance between two longitudinal and transver-
sal stiffeners, respectively,

n h h
y o _h
E(z b b
Om = /71 E?/lx (Z) ATdz, pmyx = dii / Esx(z>“1<Z)ATdZ'¢my = ETE Esy(z>“2<Z)ATdZ’
b —i-m —5—h
h h 5

4 2
¢ = %a (z) ATdz, ¢y = bi / z2Esx(z)a1(2)ATdz, vy = é / zEsy(z)a2(z)ATdz.
v dq d2

_h_hl —%—hz

]
N



204 Dao Van Dung, Nguyen Thi Nga

APPENDIX II
Eisbq Eqy, by 2 1 Eisbq
( 11 + 4 2+ 5 12/ =3 11 + &

% 1 El b2 % A12 * 1 * * *
Ap = A <A22 + drz ) , Ap = A Ags = A’ By = Ay (Bi1 + C1) — AppBao,
B3, = Aly (B + C2) — A1pB1a,  Biy = A3Bin — Ay (B + Ca),

* * * * B
By = A11Bia — AT (Bi1 +C1), Bge = 7A66 ,

66

x E3Sb1 * *

Dll - Dll + - B11 (Bl] + Cl) - B21B12,

Es.b
D3, = Dy + % — B3, (Baz2 + C2) — B, B1a,

Dj, = D1p — B, (B11 + C1) — B3,B1a, D3 = D1p — By (Bo + C2) — BiyB1a,

APPENDIX III
[ — 40(2DT1 + A44 52
U7 A7 (402D, + Au) + 4a2B3? 3207
7Ly = AP°D, + Ass L
" Ay (4FDy, + Ass) +4R2BE 3267
Ly— (Agaaa — Assannf) a3 + (Assan p — Agana) ax
DH[a*Af, +a2B2 (Afe—2A%,) + B4 A%, | +(a13022—a1223) a13+ (a11823 — a21013) a3
L A —A
Ly = D73* (a13a22 — a1pa23) — 44a22aD* 55(112'3,
Ls Assa11 — Agalino
Ls = 55 (anazxs — anais) — e ,
8a3B; 8B3B:
Le= 2L, Ly PBn Ly, D* = anaxn — apay,

402D} + Ay ~ 4PDy, + As
a11 = a’Dj; + B?Dig + As, axm = B*Di +a’D}g + Ass, ap = ap (D, + D),
an = aP (D3 +Dgg), m3 = — [&’B3; +ap® (B — Bg)],
a3 = — [,Banz +a’B (B3, — Bis)] -
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