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Abstract. In practice, an inverted pendulum can be used to model many real structures
as the arms of robots, soil structures, or fluid structures. However, the study on the design
of dynamic vibration absorber for inverted pendulum structures is very limited in the lit-
erature. To the best knowledge of the authors, however, there has been no study on the
dynamic vibration absorber when the primary inverted pendulum structure is damped.
This paper deals with the optimization problem of dynamic vibration absorber for in-
verted pendulum structures. Two novel findings of the present study are summarized
as follows. First, the optimal parameters of dynamic vibration absorber for undamped
inverted pendulum structures are given by using H∞ optimization. Second, the authors
suggest a so-called global-local approach to determine approximate expressions for opti-
mal parameters of a pendulum type absorber attached to a damped inverted pendulum
structure. Finally, a numerical simulation is done for an example of the articulated tower
in the ocean to validate the effectiveness of the results obtained in this work.

Keywords: Dynamic vibration absorber, inverted pendulum, damped structure, global-
local approach, analytical solutions.

1. INTRODUCTION

A passive vibration control device attached to a primary structure to reduce harm-
ful vibration is called a dynamic vibration absorber (DVA). The first DVA was introduced
by Frahm [1] in 1909 for mass-spring structures but it has no the damper element and is
only useful in a narrow range of frequencies very close to the natural frequency of the
DVA. In 1928, Ormondroyd and Den Hartog [2] found that a DVA containing a viscous
damper was effective to an extended range of frequencies. The DVA proposed by Den
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Hartog is now known as a standard model of DVA where a spring element and a viscous
element are arranged in parallel.

For undamped mass-spring structures, there have been many optimization crite-
ria given to design a DVA. Three typical optimization criteria are H∞ optimization, H2
optimization, and stability maximization. The H∞ optimization was first proposed by
Ormondroyd and Den Hartog [2] when the primary structure is subjected to harmonic
excitation. The objective was to minimize the maximum amplitude magnification factor
of the primary structure. Den Hartog [3] presented the optimal tuning ratio and damping
ratio of a DVA by using a so-called fixed-point theory. It is noted that the DVA’s optimal
parameters derived by utilizing the fixed-point theory are only approximate solutions
because some approximations are taken. Nishihara and Asami [4] proposed the exact so-
lutions and compared these with the results given by Den Hartog. They found that both
optimal tuning ratio and damping ratio presented by Den Hartog were very close to the
exact solutions. Hence, the fixed-point theory provided a very good approximation of
the exact solutions for the H∞ optimization in practice because the exact solution was too
complicated. The H2 optimization criterion was given by Crandall and Mark [5] in 1963
when the primary structure is subjected to random excitation. The purpose was to min-
imize the area under the frequency response curve of the main structure. Iwata [6] and
Asami [7] gave a DVA’s optimal parameters according to the H2 optimization. The sta-
bility maximization criterion and exact solutions of optimum parameters of a DVA were
suggested by Yamaguchi [8] in 1988. The aim was to improve the transient vibration of
the structure.

When the primary mass-spring structure is damped, it is difficult to obtained ana-
lytical solutions for the optimum parameters of a DVA. For the H∞ optimization,Ioi and
Ikeda [9] used a numerical method to give empirical formulae for the optimum param-
eters of a DVA. Pennestri [10] suggested a min-max design of a DVA where a min-max
objective function subjected to six constraint equations with seven unknown variables
was found. In 2002, Asami et al. [11] presented a series solution for the H∞ optimiza-
tion. Using an approximate assumption of the existence of two fixed points, Ghosh and
Basu [12] presented a closed-form expression for the optimal tuning ratio of a DVA. Anh
and Nguyen [13, 14] suggested approximate analytical solutions for optimal parameters
of a DVA based on the idea of the criteria of the equivalent linearization method. For
the H2 optimization, Asami et al. [11] gave an exact solution but their solution was ex-
tremely complicated so they proposed an approximate solution for practical use. In 2012,
Tigli [15] provided the exact optimum parameters of a DVA for the H2 criterion in the case
of velocity and approximate solutions when minimizing the displacement and accelera-
tion of the main structure. For the stability optimization, Nishihara and Matsuhisa [16]
gave the exact solution of a DVA’s optimal parameters in 1997.

Conventional pendulum structures have received high interest in researches and
engineering applications when considering many structures such as ropeway carriers,
cranes or ships subjected to wave loading. A conventional pendulum model and optimal
parameters of a DVA moving in the tangential direction were proposed by Matsuhisa et
al. [17]. Viet et al. [18] investigated a DVA moving in the normal direction by using the
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effective damping approach. Viet et al. [19, 20] studied a DVA moving in both tangential
and normal directions and two orthogonal DVAs for conventional pendulum structures.

A more general model called the inverted pendulum structure was suggested by
Anh et al. [21]. The mass-spring structures and conventional pendulum structures can
be obtained from the inverted pendulum model as special cases. In practice, many real
structures can be modeled as inverted pendulums, for example, soil structures [22] or
fluid structures [23]. The soil-structure interaction can be modeled by tension springs
while in the fluid-structure interaction the torsion springs are due to buoyancy forces.
Dong et al. [23] investigated the response of an articulated tower in the ocean subjected
to deterministic and random wave loading. The tower was modeled as an upright rigid
pendulum with a concentrated mass at the top and having one angular degree of free-
dom about a hinge with Coulomb damping which can be replaced approximately by an
equivalent linear viscous one. Compliant platforms such as articulated towers are eco-
nomically attractive for deep-water conditions because of their reduced structural weight
compared to conventional platforms. The foundation of the tower does not resist lateral
forces due to wind, waves, and currents. Instead, restoring moments are provided by
a large buoyancy force, a set of guy-lines or a combination of both [24–27]. The use of
dynamic absorber as an additional tool for vibration control of inverted pendulum struc-
tures is very limited in the literature. Anh et al. [21] used the stability optimization to
give optimal parameters of a DVA for undamped inverted pendulum structures. To the
best knowledge of the authors, there has been no study on the DVA using H∞ optimiza-
tion for undamped structures and the DVA for damped inverted pendulum structures.
Perhaps a reason is that the calculations in these cases are too complicated.

The equivalent linearization method is one of common approaches to approximate
analysis of dynamic systems. The original linearization for deterministic systems was
proposed by Krylov and Bogoliubov [28]. Afterwards, Caughey [29, 30] expanded the
method for stochastic systems. Thenceforth, there have been some extended versions of
the equivalent linearization method. Recently, Anh et al. [31, 32] proposed a so-called
global-local criterion for the equivalent linearization method. In this paper, optimal an-
alytical parameters of a DVA installed in an undamped inverted pendulum structure
using H∞ optimization are presented. Afterwards, based on the idea of the global-local
criterion, the authors suggest an analytical approach to give approximate analytical ex-
pressions of a DVA’s parameters for damped structures by replacing the original damped
structure by an equivalent undamped structure. Finally, numerical simulation is done for
an example of the articulated tower in the ocean to validate the accuracy of the results
obtained in this study.

2. OPTIMAL PARAMETERS OF A DYNAMIC VIBRATION
ABSORBER ATTACHED TO UNDAMPED INVERTED PENDULUM STRUCTURES

Fig. 1 illustrates a pendulum type absorber attached to an undamped inverted pen-
dulum structure. The primary structure has a concentrated mass m at the top. The length
of beam is l and the length mass density is ρ. The torsion spring coefficient is ks. A pendu-
lum type absorber has the mass md, length ld, spring constant kd and damping constant
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cd. The absorber is installed in the main structure through a pulley with the radius r. The
system is subjected to an external force f (t) = f0 sin Ωt.

Using Lagrange approach and ignoring the high power terms, the linear motion
equations are written in the matrix form as follows [21][

ml2 + 1
3 ρl3 + md (d− ld)

2 mddld −mdl2
d

mddld −mdl2
d mdl2

d

] [
θ̈
θ̈d

]
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[
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Figure 1. A dynamic vibration absorber attached to an undamped inverted pendulum structure 
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where   is the mass ratio of the DVA to the main structure,   is the DVA’s position, s  is the natural 

frequency of the main structure, d  and d  are the natural frequency and damping ratio of the DVA, 

respectively,   is the tuning ratio,   specifies the mass distribution of the main structure,   is the 

frequency ratio of the external force.     

The matrix equation (1) can be rewritten as [21] 
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As can be seen in Eq. (3), when 1   , we obtain the conventional pendulum structures. When 1   

and 0  , we have the mass-spring structures. 

In many practical applications, the natural frequency of a DVA is required to be small. This means that 
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where µ is the mass ratio of the DVA to the main structure, γ is the DVA’s position,
ωs is the natural frequency of the main structure, ωd and ξd are the natural frequency
and damping ratio of the DVA, respectively, α is the tuning ratio, η specifies the mass
distribution of the main structure, β is the frequency ratio of the external force.

The matrix equation (1) can be rewritten as [21][
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Figure 2. An inverted pendulum type dynamic vibration absorber 
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At the third step, the DVA’s damping ratio d  is determined by letting P  and Q  be two peaks of H , 

namely 

Fig. 2. An inverted pendulum type dynamic vibration absorber

As can be seen in Eq. (3), when η = −1, we obtain the conventional pendulum
structures. When γ = 1 and η = 0, we have the mass-spring structures.

In many practical applications, the natural frequency of a DVA is required to be
small. This means that the DVA’s length is too long. To solve this problem, an inverted
pendulum type DVA as shown in Fig. 2 is a good solution. In this case, the motion
equations are similar to Eqs. (1) and (3) but in Eq. (2) we replace ld by −ld. Anh et al. [21]
have shown that the inverted pendulum DVA in Fig. 2 has better performance than the
conventional pendulum DVA does.

To the best knowledge of the authors, there has been no study on a DVA using
H∞ optimization. In this section, we will use the fixed-point method to give the optimal
parameters of a DVA for the H∞ optimization. Using Eq. (3), the amplitude magnification
factor of the primary structure is determined as follows

H =

∣∣∣∣∣ u
3 f0
/
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s
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2 ξ2
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d
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where
H1 = α2 − β2,
H2 = 2αβ,
H3 = α2 (1− µγη)− µη2 −

(
1 + α2 + µα2γ2 + µγη

)
β2 + β4,

H4 = 2αβ
(
1− µγη − β2 − µγ2β2) .

(5)

Fig. 3 presents the graphs of the amplitude magnification factor H versus the fre-
quency ratio β corresponding to some different values of the DVA’s damping ratio ξd. We
observe from this graphs that there exist two fixed points P and Q which are independent
of ξd. At the first step of the fixed-point method, we will find two positions of P and Q.
Because P and Q are intersection points of the graphs H, the positions of P and Q can be
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Figure 3. Graphs of the amplitude magnification factor versus the frequency ratio   

The optimal damping ratio of the DVA are found as 
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The results (14) are two optimal parameters of a pendulum type DVA in the case of undamped inverted 

pendulum structures. These results will reduce to Den Hartog’s results [3] for mass-spring structures 

when 1  , 0   and to Matsuhisa et al.’s results [17] for conventional pendulum structures when 

1   . Fig. 4 shows the DVA’s effectiveness when it is installed in a primary structure. It is seen that the 

DVA has a great performance in vibration reduction of the primary structure. Furthermore, the optimal 

Fig. 3. Graphs of the amplitude magnification
factor versus the frequency ratio β
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Combining Eq. (7) with Eq. (8), we obtain an optimal value of the tuning ratio as follows
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The optimal damping ratio of the DVA are found as
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Introducing Eqs. (4) and (5) into Eq. (11), using Eqs. (7) and (12), we obtain

ξd =

√
1− α2 (3 + µγ2)

2 + µγ2 +
α4 (2 + µγ2 + µ2γ3η

)
+ α2 (2µγη + µη2 + µ2γ2η2)+ µη2

2α2 (1− µγη)− µη2

2α
√

1 + µγ2
.

(13)
Finally, combining Eq. (9) with Eq. (13), we have

α =

√
1− µγη (2 + µγ2)

1 + µγ2 ,

ξd =

√
1− α2 (3 + µγ2)

2 + µγ2 +
α4 (2 + µγ2 + µ2γ3η

)
+ α2 (2µγη + µη2 + µ2γ2η2)+ µη2

2α2 (1− µγη)− µη2

2α
√

1 + µγ2
.

(14)
The results (14) are two optimal parameters of a pendulum type DVA in the case

of undamped inverted pendulum structures. These results will reduce to Den Hartog’s
results [3] for mass-spring structures when γ = 1, η = 0 and to Matsuhisa et al.’s re-
sults [17] for conventional pendulum structures when η = −1. Fig. 4 shows the DVA’s
effectiveness when it is installed in a primary structure. It is seen that the DVA has a great
performance in vibration reduction of the primary structure. Furthermore, the optimal
DVA designed by Eq. (14) makes the peak of the amplitude magnification factor H con-
siderably smaller than an un-optimal DVA does. However, the analytical solution in Eq.
(14) requires an extension to damped structures because the damping always exists in
real structures. In the following sections, a simple approach will be presented to design
a DVA for damped inverted pendulum structures.

3. AN EQUIVALENT UNDAMPED STRUCTURE

In this section, we will use the global-local approach presented in Ref. [32] in or-
der to replace approximately the original damped structure by an equivalent undamped
structure as shown in Fig. 5.

In the case of Fig. 5a with damped original structure, to the first order the equation
of motion is given as follows

θ̈ + 2ξsωs θ̇ + ω2
s θ = 0. (15)

In order to obtain the equivalent undamped structure (see Fig. 5b) we replace the
viscous element 2ξsωs θ̇ by the spring term γθ

2ξsωs θ̇ ≈ γθ, (16)

where γ is the equivalent coefficient that will be determined by the global-local criterion.
Based on Eq. (16), the damped system 5a is approximately replaced by the undamped
system 5b and the equation (15) becomes as follows

θ̈ + ω2
e θ = 0, (17)
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3. AN EQUIVALENT UNDAMPED STRUCTURE

In this section, we will use the global-local approach presented in Ref. [32] in order to replace

approximately the original damped structure by an equivalent undamped structure as shown in Fig. 5. 

In the case of Fig. 5a with damped original structure, to the first order the equation of motion is given 

as follows 
2

s s s2 0                                 (15) 

In order to obtain the equivalent undamped structure (see Fig. 5b) we replace the viscous element 

s s2   by the spring term   

s s2   (16)

where   is the equivalent coefficient that will be determined by the global-local criterion. Based on Eq.

(16), the damped system 5a is approximately replaced by the undamped system 5b and the equation (15) 

becomes as follows
2 0e    (17) 

where e is the equivalent frequency 

2 2

e s    (18)

Fig. 5. An approximation of primary structure

where ωe is the equivalent frequency

ω2
e = ω2

s + γ. (18)

Eq. (17) gives
θ = Θ cos ϕ, θ̇ = −ωeΘ sin ϕ, ϕ = ωet + ϕ0. (19)

Using the global-local criterion at local step we have

S =
〈(

2ξsωs θ̇ − γθ
)2
〉

Φ
→ min

γ
, (20)

where the local averaging operator

〈.〉Φ =
1
Φ

Φ∫
0

(.) dφ, (21)

is introduced for a local domain Φ with 0 ≤ Φ ≤ 2π.
The criterion (20) leads to dS/dγ = 0. Thus, we have〈(

2ξsωs θ̇ − γθ
)

θ
〉

Φ = 0, (22)

or

γ = 2ξsωs

〈
θθ̇
〉

Φ
〈θ2〉Φ

. (23)

Combining Eqs. (19) and (21), we get〈
θθ̇
〉

Φ = −Θ2ωe sin2 Φ
2Φ

,〈
θ2〉

Φ =
Θ2

4Φ
(2Φ + sin 2Φ) .

(24)



A global-local approach to the design of dynamic vibration absorber for damped inverted pendulum structures 65

Substituting Eqs. (24) into Eq. (23) yields

γ = −4ξsωsωe
sin2 Φ

2Φ + sin 2Φ
. (25)

Using Eqs. (18) and (25), we obtain

ω2
e + 4ξsωsωe

sin2 Φ
2Φ + sin 2Φ

−ω2
s = 0. (26)

Eq. (26) is a quadratic equation in terms of frequency ωe . Solving this equation leads to

ωe (Φ) = ωs

[√
1 +

4 sin4 Φξ2
s

(2Φ + sin 2Φ)2 −
2 sin2 Φ

2Φ + sin 2Φ
ξs

]
. (27)

At the global step, the equivalent frequency ωe is finally determined as the average
value of all local equivalent frequencies as follows

ωe =
1

2π

2π∫
0

ωe(Φ)dΦ =
1

2π

2π∫
0

ωs

[√
1 +

4 sin4 Φξ2
s

(2Φ + sin 2Φ)2 −
2 sin2 Φ

2Φ + sin 2Φ
ξs

]
dΦ. (28)

We have replaced the damped primary structure with an equivalent undamped
structure where the approximate frequency ωe is given in Eq. (28). In section 4, we will
use the above results to give the approximate optimal parameters for a DVA attached to
damped inverted pendulum structures.

4. DYNAMIC VIBRATION ABSORBER FOR DAMPED STRUCTURES

Fig. 6 illustrates a system consisting of a pendulum type DVA and a damped in-
verted pendulum structure. The motion equations for this case are[

1 + µγ2 µγ
µγ µ

][
ü
üd

]
+ ωs

[
2ξs 0
0 2µαξd

][
u̇
u̇d

]
+ ω2

s

[
1− µγη −µη
−µη µα2

][
u
ud

]
=

[
3 f (t)

/
(3m + ρl)
0

]
.

(29)
The amplitude magnification factor is determined as follows

H =

∣∣∣∣∣ u
3 f0
/
(3m + ρl)ω2

s

∣∣∣∣∣ =
√

A2 + B2

C2 + D2 , (30)

in which

A = α2 − β2,
B = 2αβξd ,
C = α2 (1− µγη)− µη2 −

(
1 + α2 + µα2γ2 + µγη + 4αξsξd

)
β2 + β4,

D = 2αβξd
(
1− µγη − β2 − µγ2β2)+ 2ξsβ

(
α2 − β2) .

(31)

Using the results (14) for the equivalent undamped structure, we have
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It is noted that 
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Using Eqs. (28), (32) and (33), we obtain the DVA’s parameters as follows 
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αe =

√
1− µγη (2 + µγ2)

1 + µγ2 ,

ξde =

√
1− α2

e
(
3 + µγ2)

2 + µγ2 +
α4

e
(
2 + µγ2 + µ2γ3η

)
+ α2

e
(
2µγη + µη2 + µ2γ2η2)+ µη2

2α2
e (1− µγη)− µη2

2αe
√

1 + µγ2
.

(32)
It is noted that

αe =
ωd

ωe
; α =

ωd

ωs
. (33)

Using Eqs. (28), (32) and (33), we obtain the DVA’s parameters as follows

α =

√
1− µγη (2 + µγ2)

2π (1 + µγ2)

2π∫
0

[√
1 +

4sin4Φξ2
s

(2Φ + sin 2Φ)2 −
2sin2Φ

2Φ + sin 2Φ
ξs

]
dΦ,

ξd =

√
1− α2 (3 + µγ2)

2 + µγ2 +
α4 (2 + µγ2 + µ2γ3η

)
+ α2 (2µγη + µη2 + µ2γ2η2)+ µη2

2α2 (1− µγη)− µη2

2α
√

1 + µγ2
.

(34)
Eq. (34) is an approximate analytical solution for optimal parameters of a DVA

attached to a damped inverted pendulum structure. The effectiveness of these results
will be validated in next section.

5. VALIDATION

5.1. Undamped inverted primary pendulum structures
In this section, the result (14) proposed in this paper is compared with the solution

given by Ref. [21] as follows
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αRef.[21] =

√
(1− γηµ)2 + µη2 (1 + γ2µ)2

(1 + γ2µ)
√

1− γηµ
,

ξd Ref.[21] =

√
µ (γ + η)2√

(1 + γ2µ)
[
(1− γηµ)2 + µη2 (1 + γ2µ)2

] .
(35)

Figs. 7 and 8 describe the comparisons of the amplitude magnification factor H.
The solid line is the graph when using Eq. (14) and the dashed line is the case using the
result given by Ref. [21]. As we can observe, the peak of the amplitude magnification
factor is considerably lowered when using the DVA designing from Eq. (14) suggested in
this paper.
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Fig. 7. Comparison of the amplitude magnifi-
cation factors H for undamped primary struc-
tures where µ = 0.03, γ = 1, η = 0.6
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Fig. 8. Comparison of the amplitude magnifi-
cation factors H for undamped primary struc-
tures where µ = 0.05, γ = 1, η = 0.6

5.2. Damped inverted primary pendulum structures
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Fig. 10. Comparison of the amplitude magni-
fication factors H for damped primary struc-
tures where µ = 0.03, γ = 1, η = 0.6, ξs = 0.1



68 N. D. Anh, N. X. Nguyen

11 

 

 
Figure 11. Comparison of the amplitude magnification factors H  for damped primary structures where 

s0.05, 1, 0.6, 0.05       . 

 
Figure 12. Comparison of the amplitude magnification factors H  for damped primary structures where 

s0.05, 1, 0.6, 0.1       . 

7. CONCLUSIONS 

This paper is concerned with an optimization problem of a pendulum type dynamic vibration absorber for 

inverted pendulum structures. This model is a general case where the conventional pendulum and mass-

spring structures can be obtained from it as special cases. In practice, the inverted pendulum can be used 

to model many real structures as the arms of robots, soil structures, or fluid structures. To the best 

knowledge of the authors, there has been no study on the design of a DVA for undamped inverted 
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approximately the damped primary structure with an equivalent undamped structure. After that, 
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to model many real structures as the arms of robots, soil structures, or fluid structures. To the best 
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Fig. 12. Comparison of the amplitude magni-
fication factors H for damped primary struc-
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amplitude magnification factor H using the result (34) are significantly lower than those
using the solution (14). Therefore, the result (34) for damped structures proposed in this
study is useful in practice.

6. CONCLUSIONS

This paper is concerned with an optimization problem of a pendulum type dy-
namic vibration absorber for inverted pendulum structures. This model is a general case
where the conventional pendulum and mass-spring structures can be obtained from it as
special cases. In practice, the inverted pendulum can be used to model many real struc-
tures as the arms of robots, soil structures, or fluid structures. To the best knowledge of
the authors, there has been no study on the design of a DVA for undamped inverted pen-
dulum structures using H∞ optimization as well as a DVA for damped structures. The
novelty of this study can be summarized below.

- Optimal parameters of a DVA attached to an undamped inverted pendulum
structures using H∞ are found as in Eq. (14).

- Approximate analytical expressions of a DVA’s optimal parameters are given for
damped structures as shown in Eq. (34). The main idea is using the global-local approach
to replace approximately the damped primary structure with an equivalent undamped
structure. After that, the parameters of a DVA are obtained by using known results for
undamped structures.

- Comparisons are done to show that the results suggested in this paper are useful
in practice.
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