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Abstract. In this article, two typical experiments for two types of destruction of granu-
lar column were performed by 2D soil model. High speed camera was used to record
the movements of the destruction of the granular column. The images clearly showed
the whole development of granular flows. The destruction process of the granular col-
umn in the two experiments is a big deformation problem of soil mechanics. To simu-
late the destruction process of the granular column, a model solving the problem of soil
mechanics by Smoothed Particle Hydrodynamics (SPH) method was developed. The ba-
sic equations of problems of soil mechanics using the Drucker-Prager constitutive model
were discretized using SPH method. The calculation results of the numerical model de-
veloped by us were compared with the experiment results obtained at the same time since
the destruction of the granular column started. This was the first time by comparing and
analyzing in details the characteristics of the process of destruction and developments of
granular flows for the two typical types of destruction of granular column, it was shown
that the numerical model describes quite accurately the characteristics of granular flows
in both space and time.

Keywords: Granular flow, failure mechanism of granular column, 2D soil experiment, SPH
method, mesh-free particle method.

1. INTRODUCTION

In recent years, the landslides caused by earthquakes and landslides caused by
storm rains with high intensity for a long time have been increasing, especially in coun-
tries with frequent earthquakes like Japan and the countries with dangerous mountain-
ous terrain and impacts of global climate change, such as Vietnam, Philippines and In-
donesia. Landslide has threatened the safety of lives and properties of the people living
in the steep mountainous areas with easily destructed geological structure.
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To limit the damages to humans and properties due to natural disasters, the pre-
vention work by early warning and predicting landslides as well as evacuating the peo-
ple away from the areas with high risks of landslides is essential. To delineate areas with
high risk of landslide, as well as forecast, warn landslides besides studies of geological
survey, numerical models are necessary for simulation, calculation of erosion thresholds
and conditions.

Since 2004, many authors and researcher groups have studied this problem both
experimentally and theoretically with the aim to find out the characteristics of the process
such as destroyed domain, areas affected by destruction,... These characteristics are of
great significance in the planning of residential development in areas with high risk of
landslide. The authors who used experiments to study this problem include Lube et
al. [1, 2], Balmforth et al. [3], Lajeunesse et al. [4, 5]), Trepanier et al. [6], Warnett et al. [7],
Nguyen et al. [8]... In addition to the researcher groups based on experiments, a lot
of authors and researcher groups studied the theory and the numerical model simulate
this problem such as Staron et al. [9], Bui [10], Bui et al. [11, 12]), Blanc [13], Artoni et
al. [14], Kumar et al. [15], Midi et al. [16]. The numerical models which were developed
to study the erosion problem could be classified into two types, mesh-based models (such
as finite element method, finite difference method) and mesh-free methods... The mesh-
based method allows to predict the landslide thresholds and conditions and sliding limit
but cannot describe the landslide process and forecast the state after the landslide. The
mesh-free method overcomes the above disadvantages which the mesh-based methods
fail to do. The whole landslide process and state after landslide can be calculated and
simulated. The mesh-free methods are used to study this problem, mainly the Discrete
Element Method (DEM) method and Smoothed Particle Hydrodynamics (SPH) method.

The typical researcher group who applied the DEM method may include Staron et
al. [9], Kumar et al. [15], Crosta et al. [17], Bui et al. [11, 12]) and Utili et al. [18]. In 2008,
Bui et al. [11] was one of the researcher groups leading in the application of SPH method
to solve this problem, later there were many more researcher groups who applied SPH
method to study this problem such as Blanc [13], Midi et al. [16]. So far the publica-
tions related to the application of SPH method to study 2D-soil granular flows have just
stopped at the verification of calculation results of the models with experiment results at
the last moment, i.e. when the destruction of the granular column ended. In this article,
it is the first that the results of the 2D granular flow problem model using SPH method
have been fully verified with experiments in both space and time.

2. MATHEMATICAL FORMULATION AND NUMERICAL METHOD

2.1. SPH meshfree particle method
The SPH method was independently developed by two group authors (Lucy [19];

R. A. Gingold and J. J. Monaghan [20]) for astrophysics applications. Since its inven-
tion, the SPH method has been extended to various applications such as fluid mechan-
ics (Monaghan [21]), solid mechanics (Libersky et al. [22]) and geomechanics (Bui et
al. [11, 12]).

SPH methods include two essential formulas for a function and the derivative of a
function such as Eqs. (1) and (2) below.
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A(r) =
∫

A(r′)W(|r− r′|, h)dr′ + O(h2)

=
∫ A(r′)

ρ(r′)
W(|r− r′|, h)ρ(r′)dr′ + O(h2)

≈
N

∑
b=1

mb

ρb
AbW (|r− rb| , h) ,

(1)

∇A(r) =
∂

∂r

∫ A(r′)
ρ(r′)

W(|r− r′|, h)ρ(r′)dr′ + O(h2)

≈
N

∑
b=1

mb
Ab

ρb
∇aWab ,

(2)

where A - any variable defined on the spatial coordinate r; W - kernel function which is
chosen to be the cubic-spline function; and h - smoothing length which specifies the in-
terpolation area; m - mass of particle; b - the quantity evaluated at the position of particle
b and

∇aWab ≡
rab

|rab|
∂Wab

∂ra
. (3)

2.2. Motions of granular flows in SPH
The basic equations used to describe the motion of soil in the SPH framework are

the continuity equation and the momentum equation (Bui et al. [11]). These two equa-
tions are written as follows

dρ

dt
= −1

ρ
∇.v , (4)

ρ
dv
dt

= ∇.σ + ρg + fext , (5)

where v is the vector velocity of soil particle; ρ is the density; σ is the total stress tensor,
taken negative for compression; g is the acceleration due to gravity; and fext is additional
external forces. The total stress tensor of soil is normally composed of the effective stress
(σ′) and the pore-water pressure (pw), which followed the Terzaghi’s concept of effective
stress. Because the pore-water pressure is not considered, the total stress tensor and
the effective stress are identical throughout this paper and can be computed using any
material constitutive model.

Applying Eq. (2), the partial differential form of equations Eqs. (4) and (5) can be
discretized in the SPH framework in the following way (Bui et al. [11])

dρa

dt
=

N

∑
b=1

mb (vα
a − vα

b)
∂Wab

∂xα
a

, (6)

dvα
a
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a

ρ2
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σ
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b
ρ2

b
+ Cαβ

ab

)
∂Wab
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a
∇+ gα

a + f α
ext→a , (7)
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where α and β denote Cartesian components x, y, z with the Einstein convention applied
to repeated indices; a indicates the particle under consideration; ρa and ρb are the densi-
ties of particle a and b respectively; N is the number of “neighboring particles”, i.e. those
in the support domain of particle a; mb is the mass of particle b; Cαβ

ab is the stabilization
term employed to remove the stress fluctuation and tensile instability (Bui et al. [12]); and
fext→a is the external force acting on particle a.

The stress tensor in Eq. (7) can be computed using any soil constitutive model
developed in the literature, which are applicable for the finite element method (FEM).
In this paper, the Drucker-Prager constitutive model with non-associated flow rule was
chosen. This model was implemented in the SPH framework by Bui et al. [11], and was
shown to be an appropriate soil model for simulating large deformation and post-failure
behavior of aluminum rods which are used in the current paper as model ground. The
stress-strain relation of this soil model is given by

σ̇ = De : (ε̇− ε̇p) , (8)

where De is the elastic constitutive tensor; ε̇p is the strain rate tensor; and is its plastic
component. Here, an additive decomposition of the strain rate tensor has been assumed
into elastic and plastic components. The plastic component can be calculated using the
plastic flow rule

ε̇p = λ̇
∂gp

∂σ
, (9)

where λ̇ is the rate of change of plastic multiplier, and gp is the plastic potential function.
The plastic deformation occurs only if the stress state reaches the yield surface. Accord-
ingly, plastic deformation will occur only if the following yield criterion is satisfied

f = αφ I1 +
√

J2 − kc = 0 , (10)

where I1 and J2 are the first and second invariants of the stress tensor; and aφ and kc
are Drucker-Prager constants that are calculated from the Coulomb material constants
c (cohesion) and φ (internal friction). In plane strain, the Drucker-Prager constants are
computed by

αφ =
tan φ√

9 + 12tan2φ
, (11)

and

kc =
3c√

9 + 12tan2φ
. (12)

The non-associated plastic flow rule specifies the plastic potential function by

gp = αψ I1 +
√

J2 − const , (13)

where αψ is a dilatancy factor that can be related to the dilatancy angle ψ in a fashion sim-
ilar to that between αφ and friction angle φ. Substituting Eq. (9) into Eq. (8) in association
with the consistency condition, that is the stress state must be always located on the yield
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surface f during the plastic loading, the stress-strain relation of the current soil model at
particle a can be written as

dσ
αβ
a

dt
= 2Ga ėαβ

a + Ka ε̇
γγ
a δ

αβ
a − λ̇a

[
3Kaαψaδαβ +

(
G√
J2

)
a
sαβ

a

]
, (14)

where ėαβ
a = ε̇

αβ
a − 1

3 ε̇
γγ
a δαβ is the deviatoric strain-rate tensor; sαβ is the deviatoric shear

stress tensor; and λ̇a is the rate of change of plastic multiplier of particle a, which in SPH
is specified by

λ̇a =
3αφaKa ε̇

γγ
a +

(
G/
√

J2
)

asαβ
a ε̇

αβ
a

9αφaKaαa + Ga
, (15)

and ε̇
αβ
a is the strain-rate tensor computed by

ε̇
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a =
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a

. (16)

When considering a large deformation problem, a stress rate that is invariant with
respect to rigid-body rotation must be employed for the constitutive relations. In the
current study, the Jaumann stress rate, ˙̂σαβ

a is adopted

˙̂σαβ
a = σ̇

αβ
a − σ

αγ
a ω̇

βγ
a − σ

γβ
a ω̇

αγ
a , (17)

where ω̇
αβ
a is spin-rate tensor computed by
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αβ
a =

1
2

N

∑
b=1

mb

ρb
(vα

b − vα
a)

∂Wab

∂xβ
a
− 1

2

N

∑
b=1

mb

ρb

(
vβ

b − vβ
a

) ∂Wab

∂xα
a

. (18)

As a result, the final form of the stress-strain relationship for the current soil model
is modified to

dσ
αβ
a

dt
= σ

αβ
a ω̇

βγ
a + σ

γβ
a ω̇

αγ
a + 2Ga ėαβ

a + Ka ε̇
γγ
a δ

αβ
a − λ̇a

[
3Kaαψaδαβ +

(
Ga√
J2a

)
sαβ

a

]
. (19)

The above soil constitutive model requires six soil parameters: cohesion (c), fric-
tion angle (φ), dilatancy angle (ψ), Young’s modulus (E), Poisson’s ratio (υ), and soil
density (ρ).

3. EXPERIMENTAL

2D granular column experiments were performed with a 2D soil model created by
aluminum bars with a diameter of 3 mm and 2 mm at the ratio of 2:3. The 2D soil model
created had the properties as shown in Tab. 1.

The experiment was designed as in Fig. 1. In the figure, the axis 0x and 0y are hard
edges. Soil blocks are bounded at the bottom by 0x, the left by 0y and the right by shield.
The right shield will be removed rapidly during the experiment. In Fig. 1, h0 and d0 are
respectively the original height and width of the granular column. The experiment was
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Table 1. Soil properties

Name Value Unit
Density (ρ) 2074 (Kg/m3)
Friction angle (φ) 21.9 (deg)
Young’s module (E) 5.84 (Mpa)
Poisson’s ratio (υ) 0.3
Dilatant angle (ψ) 0 (deg)
Cohesion (c) 0 (kPa)

carried out in two options characterizing the destruction types of granular flow corre-
sponding to the following parameters: Option 1: h0 = 10 (cm), d0 = 20 (cm); Option 2:
h0 = 10 (cm), d0 = 10 (cm).

5 

d

h

x

y

0 

Fig. 1. Experiment model

Fig. 2. Experiment setup Fig. 3. Final result of experiment

Initially, the experiment was setup as shown in Fig. 2. After the right shield of
the soil block was removed, the granular column would be destroyed. The destruction
process of the granular column was recorded by Photron high speed camera to test the
numerical model in both mechanism and time of the granular column destruction. The
experiment results in Fig. 3 is a picture after the destruction of the granular column ends.

4. RESULTS AND COMPARISONS

The numerical model is established to calculate and simulate the 2D granular flow
problem with the size parameters of the granular column and the properties of the 2D soil
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model as described in Tab. 1 and Fig. 1 above. To get the overall picture of the destruction
mechanism of the granular column, this study calculated and compared the two cases
representing two types of destruction of the granular column with experimental data
corresponding to the value of the ratio a = h0/d0 of the domains a > 0.65 and a < 0.65.

4.1. Option 1
The calculation option has h0 = 10 (cm), d0 = 20 (cm) and a = 0.5 < 0.65. With

such parameters of the granular column, after the destruction of the granular column
ended, the height of remaining granular column was still equal to the initial height of
the granular column of 10 (cm). The calculation results of the destruction process of the
granular column were compared with the experiment results obtained at the same time
as shown in Fig. 4.

Fig. 4b shows that the calculation results and experiment results at the time 0.09 (s).
Fig. 4b shows that the calculation results and experiment results are basically the same.
The difference at this time is the development process at the base of the shape of the
granular flow in the early stage of the collapse of the granular column in the experiment
results.

The calculation and experiment results at the time of 0.13 (s) as in Fig. 4c. At this
time, the impact of the movement on the right shield is no longer available, so the calcu-
lation and experiment results are very similar both qualitatively and quantitatively. The
base of the granular flow at this time, according to the calculation results, has spread to
the position 27.0 (cm), whereas the experiment results are 26.5 (cm). The destroyed do-
main the top of the granular column, as calculated and experimented, is 7.6 (cm) and 8.4
(cm), respectively.

Fig. 4d compares the calculation results and the experiment results at 0.17 (s). If at
0.13 (s), the surface of granular flow has convex bow shape as in Fig. 4c. At this point,
the shape of granular flow surface starts to turn into concave form and appeared inter-
mittent on the surface, making the granular flow surface at the base and the peak have
two different corners. At this time, the simulation and experiment results show that the
granular flow has reached the position 31.0 (cm). The destroyed domain the top of the
granular column, as calculated and experimented, is 7.5 (cm) and 8.4 (cm), respectively.

At t = 0.21 (s), the intermittent point is shown clearly as in Fig. 4e. At this time,
the surface of the granular flow forms two straight lines coming from the base and the
peak of the granular flow and intersecting at the intermittent point as in Fig. 4d. These
two lines made the granular flow surface have different peak and bottom corners. The
simulation and experiment results clearly show this phenomenon. At this time, according
to the simulation, the granular flow has reached the position 36 (cm), and according to
experiment, it is 35.5 (cm). The starting point of the destroyed domain on the top of the
granular column, as calculated and experimented, is 7.0 (cm) and 8.1 (cm), respectively.

At the time t = 0.27 (s), the intermittent point is no longer available, the surface
of the granular flow is shaped like a smooth concave curve as shown in Fig. 4f. The
difference between the base and top corners of the granular flow is gradually contracted.
The simulation and experiment results clearly show that the granular flow has reached
the position 41 (cm). The starting point of the destroyed domain on the top of the granular
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column, as calculated and experimented, is 6.5 (cm) and 7.7 (cm), respectively. Fig. 4f also
shows the calculation results are very similar to the experiment results in both granular
flow surface structure and the destroyed domain shape and run out distance.

t = 0 (s)

t = 0.09 (s)

t = 0.13 (s)

t = 0.17 (s)

t = 0.21 (s)

t = 0.27 (s)

t = 0.35 (s)

Failure zone

a)

b)

c)

d)

e)

f)

g)

Fig. 4. Comparison between experimental result and numerical simulation result
(h0 = 10, d0 = 20)

Towards the end of the destruction process of the granular column, the granular
flow surface tends to reduce the curvature and the two corners at the base and top of
the granular flow approach each other and close to the corner of internal friction of the
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t = 0 (s)

t = 0.09 (s)

t = 0.12 (s)

t = 0.16 (s)

t = 0.19 (s)

t = 0.24 (s)

t = 0.35 (s)

Failure zone

a)

b)

c)

d)

e)

f)

g)

Fig. 5. Comparison between experimental result and numerical simulation result
(h0 = 10, d0 = 10)

material. The calculation and experiment results at the end of the destruction process
of the granular flow is shown in Fig. 4g. The comparison of characteristics such as the
shape of granular flow surface, form and parameters of the destroyed domain and the
material run out distance between the simulation results and experiment results as shown
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in Fig. 4g shows that the calculation results correctly and accurately reflect compared
with experiment results.

4.2. Option 2
The calculation option has h0 = 10 (cm), d0 = 10 (cm) and a = 1.0 > 0.65. With

such parameters of the granular column, after the destruction of the granular column
ended, the height of remaining granular column was less than the initial height of the
granular column. The calculation results of the destruction process of the granular col-
umn were compared with the experiment results obtained at the same time as shown in
Fig. 5.

The calculation results are compared to the experiment results at t = 0.09 (s) as
in Fig. 5b, t = 0.12 (s) as in Fig. 5c, t = 0.16 (s) as in Fig. 5d, t = 0.19 (s) as in Fig. 5e,
t = 0.24 (s) as in Fig. 5f and the final results of the destruction process of the granular
column as shown in Fig. 5g. Fig. 5 shows the calculation results and experiment results
are very similar in terms of the variation of the transient surface of the granular flow, the
variation of the destroyed domain as well as the run out distance of the granular flow.

Unlike Option 1, in this option, the ratio a > 0.65, so the height of the remaining
granular column after the destruction h is smaller than the initial height h0 of the granular
column, i.e. h < h0. The calculation results also show that the value of granular column
height h at the time of comparison is always very close to the value observed in the
experiment results.

5. CONCLUSIONS

The images recorded with high speed camera comprehensively and completely
show both space and time of the destruction of the two granular columns. These are the
experimental data with sufficient information to allow other authors to use to verify the
numerical models or refer to and compare with their experiment results.

Through the comparison of the simulation results of the numerical model devel-
oped by us with the experiment results for the two types of destruction of the granular
column, it was obtained that the calculation results of the numerical model not only ac-
curately reflect the geometric parameters of the destruction of the granular column (such
as the shape of granular flow surface, destroyed domain, run out distance) but also show
that the times of the destruction landmarks of the granular column between calculation
and experiment are identical. The previously publications only compared the calculation
results with the experiment results at the end of the destruction process, but not men-
tioned the entire destruction process as well as the time aspect. This article shows the
overall picture in both time and space of the destruction process of the granular flow,
and our numerical model has properly described those elements. Verifying the calcu-
lation results with the experiment results in both spatial and time characteristics of the
destruction demonstrates the great advantage of the numerical model.

The findings in this article show that the numerical model solving the problem of
soil mechanics by the mesh-free method SPH developed by us has high accuracy. With
the outstanding features of the mesh-free method SPH, compared to conventional mesh-
based methods, which allows calculation and simulation of big deformation problems,
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the calculation model developed by us has enough capacity and reliability to calculate
and simulate the landslide problem to serve the design of building of anti-erosion or
landslide prediction and warning.
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