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NONCOMMUTATIVE DEFORMATION AND A 
TOPOLOGICAL NATURE OF KOITER SINGULARITY 

TRINH VAN KHOA 
' 

Hanoi Architectural rJ,niversity 

Abstract. In this paper we constructed the model of noncommutative plastic deformation 
and give the proof of Koiter hypothesis. We showed, that the occurrence of Koiter singularity 
has topological reasons and the number of Koiter singularities - is the topological Pontriagin 
number. 

1. INTRODUCTION 

The mechanism for planes of atoms shear in a crystal relative to one another is used 
when describing the process of plastic deformation in a simple case. The elastic limit is 
defined as Tcr = ~~' where a is the interatomic distance, d is the distance between the 
glide planes, and therefore the value of T er must be about an order of magnitude less than 
that of the shear modulus G. The experimental data [15] have shown, however, that for tin 
G = 1.9 x 1011 dyne/cm2 , while T ~ 13x106 dyne/cm2 , for silver the corresponding values 
are 2.8 x 1011 and 6 x 106 , for aluminium, 2.5 x 1011 and 4 x 1011 dyne/ cm2 . It should be 
noted that a more exact account of the arrangement of planes of atoms in shear yields an 
estimate Tcr rv G /30, and this exceeds the experimentally found value by several orders of 
magnitude. The reason for such a phenomenon is the coherence of rearrangements of the 
crystal structure. Therefore to describe plastic deformation, it is worthwhile to use the 
phenomenological approach accepted in continuum mechanics. 

From the point of view of phenomenology, till now there are many models of plastic 
deformation. Almost in all monographs, for example [1-3 , 13], the following models are 
considered: sliding, regular, current, singular, analytical and deformation plasticity. The 
determinant ratio in deformation is a major problem, which was submitted for discussion. 
The most simple kind was presented in the form of Hencky-Nadai: 

at T = T , (1.1) 

at T < T , 

where dO"ij, eij - deviator of a stress and deformation, Gs - current shear modulus, G - the 
elastic shear modulus, T - intensity tangent stress, T - the maximal value T for a history 
of loading pre-eminent some value T0 . In singularity model it looks like 

(1.2) 

where fn - the current limiting surface. On the appropriate surface fn performed by 
loading, then df n -=I 0 i.e. 

( ofn) 
OO"ij dO"ij 2: 0. 
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In Ilyushin model it has the kind 

(1.3) 

However , if we use the concept of deformation potential as in [1-3,10-11], by definition of 
function H , we shall receive following determining ratio 

8H 
O"ij=~· 

ueij 
(1.4) 

In our model [6] , we consider process of plastic deformation as process of phase transition, 
potential of deformation (or the free energy) plays a role of Hamil ton function or an action 
of system. So, if we admit Hamilton function as H = ae2 + j3e4 + ... , where a, /3- factors 
of elasticity, e - deformation tensor, that as a first approximation we shall receive the 
formulas (1.1) (1.2) (1.3) (if H is expressed through the metrics of spaces). Roughly 
speaking, the form (1.4) is general determining ratio for process of plastic deformation. 

The present tense one develo'ps a new idea to formulate the plastic theory. In the 
papers [5, 6] we developed a model of the crack in the vicinity of coherence (phase tran
sition). More generally, we can consider this vicinity as a thermodynamical system far 
from equilibrium. Then we come to the problem of spontaneous breaking of structure. It 
is clear, we want to consider the plastic structure. Here the problem of valuation of the 
probability for spontaneous breaking of structure is arrived. It was solved with the aid 
of identification of deformation trajectory with a knot. So inner geometry of deformation 
and invariant of knot is interconnected. Under such approach we can construCt a model 
of plastic deformation with more deep structure of geometry, in which topological charac
teristic plays a decision role [7]. In paper [18] Ch. Tsakmakis gives description of plastic 
anisotropy effects at large deformation, in which restrictions imposed by the second law 
and the postulate of Ilyushin. However , within the framework of our nonconimutative 
model of plastic deformation when using strain-potential formalism, this postulate would 
become a theorem which could be proved [7]. 

All of model of plastic deformation bases on the hypothesis of the existence of limit 
surface of deformation. However, any model of plastic deformation with smooth limit 
surface of deformation has one specific feature - it is weak apprehensibility toward the break 
of deformation trajectory. To correct this lack W.T. Koiter submitted for consideration a 
hypothesis of existence of n singularities on the limit surface of deformation [14]. Could this 
Koiter 's hypothesis be correct or not? If it is correct , then what is the nature of Koiter's 
singularity? We try to solve these problems consistently. For this purpose we should 
construct a more general model of deformation. It means that, we should construct the 
model of plastic deformation based on the noncommutative nature of deformation space 
and the fluctuation characteristic of deformation field in process of fracture. 

2. MODEL OF PLASTIC DEFORMATION 

As it is known, all experimental data have shown, that in a plastic status the stress 
and deformation is strongly fluctuative. The pressure - deformation diagram O" = f( e) is 
similar to the pressure - volume diagram P = f(V) for liquid [8] . So, ft is possible to 
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consider a process of deformation as a process of phase transition. More general, it is a 
process of formation of structure [7]. The density of distribution of transition probability 
to plasticity is a solution of the Fokker-Planck equation. However, if using potential 
character of process of deformation it is possible instead of the Fokker-Planck equation we 

·apply Schrodinger equation. In this approach the deformation tensor is chosen in the role 
of order parameter. In the work [1] A. A. Ilyusin has presented the concept of deformation 
trajectory in space E 5 . As a matter of fact , the space E 5 is a fiber in the deformation 
bundle [7]. Further, because of fluctuation of the statuses of deformation, it is necessary 
to use "the secondary calculation" to receive a plastic deformation field from the elasticity. 
Nevertheless it is necessary to notice, that the nature of process of plastic deformation is 
the noncommutative nature. 

So, the process of deformation P = {Eij(x , t)} is given. It is a noncommutative 
deformation space. The deformation wave Eij(x , t) is a noncommutative wave. For com
plete descriptions of noncommutative wave we have to use the space being tensor product 
C(R4 ) Q9 Mn, where C(R4 ) - is a algebra of smooth function determined on usual space
time, and Mn - is a algebra of n x n matrixes . In this general space the matrix function 

E(x , t) looks like (for 2-dimension case): E(x, t) = ( ~ ~ ) E C(R4) ® M2 , where 

A, B, C, D- is 1-form. Now our task is to construct a noncommutative deformation bun
dle on the C(R4 ) ® M2. This problem was performed in frameworks of noncommutative 
geometry Connes [9] . There are two important objects in this geometry. It is associative 
algebra A and universal algebra of the differential forms Db(A) on the algebra A. The 
deformation space P = C(R4) © Mn plays role of associative algebra A , at the same time 
universal algebra Db(A) looks like [10]: 

nb(A) = nb(C(R4)) ® nb(Mn) · 

It is tensor product of algebra of the differential forms over algebra of smooth function 
and algebra of the differential forms over algebra of n x n matrices. In turn, this algebra 
Db(A) can be present through the direct sum of a horizontal and vertical part 

and 
stk = stb(C(R4)) ® Mn ; n~ = C(R4) ® Db(Mn)· 

Thus, differential calculation on algebra A , being in usual external differential , is chosen. 
More precisely, if through Der(A) we had designated Lie algebra of derivative on A, we 
shall receive 

Der(A) = (Der(C(R4)) © 1) EB (C(R4) © Der(Mn)). 

Differential df of an element f E A also is divided fo~ the sum 

dj = dH f + dv f , 

where dH f and dv f belong to Dk and [2~ respectively. If Ek> k E { 1, 2, .. . , n2 
- 1} is 

the basis of algebra Mn , then ak = ad(iEk) is a basis of algebra Der(Mn) and [ok, oz] = 
2:: Ckzm8m . So, the basis ()k of algebra Db(Mn) c Db(A) is determined as ek(8z) = 8fl. 



182 Trinh Van Khoa 

If through (Ji= (ea , ea), where a= 0, 1, 2, 3;a E {1,2, ... ,n2 - 1}, the basis of algebra 
Db(A) is designated, then the basis in Der(A) will be as ei = (ea, ea) and ea= e~aµ are 
4-generators for algebra C(R4), and ea = ad(Ea) is a basis of Der(Mn) · In this case ()i 
accepts a kind 

()°' = ()°' dxµ ea = Eb Ea dEb. 
µ ' 

Differential dH and dv will accept a kind 

dHf = eaf()°', dv f = eaf()a, f EA. 

Besides, there is an canonical element() E Db(Mn(C)) determined as()= Ek()k. Within 
the framework of Cannes geometry, noncommutative bundle is right, or left A - module, 
or more exact, is Hermit A - module. On this module the following connection is defined 
[10] 

w=A+x 

and A - it is an element of n}I and x - an element of nt,. In turn, the element xis divided 
for the sum 

x = () + ¢ , 

because of the fact, that Ob(Mn) ~ n~. Here </>is a Higgs field. Higgs field¢ may be the 
temperature field or disocation [4, 7]. If U is the group of gauge maps, then an element 
w, A,() , </> will be transformed under action g EU by a rule 

w' = g-1wg + g-1dg, 

A'= g- 1 + g-ldHg, ()' = (), ¢' = 91-q;g. 

The intensity of a field of deformation is determined through the 2-form D 

or 

and 

n = dw +w2
, 

1 
F = dHA +[A, A]= 2,Fa13()°'() f3 , 

Dv = ~Dabea /\ ()b , Dab = [¢a, cPb] - C~b¢c, 
DH</>= dh</> +A</>+ </>A= O°'(ea + [Aa, ¢]) , 
¢ = cPa()°', A= Aa()°'. 

Action of the deformation field will be as 

(2.1) 

(2 .2) 

(2.3) 

Thus, in frameworks of our model [7] , we shall receive probability of transition to plasticity 

Z = J exp( - kL), 

\ 
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where k - is a factor of elasticity. 

3. THE PLASTIC INSTANTON 

We discuss the problem put above. For simplicity we are limited to consider only 
plane deformation and noncommutative wave E(x, t) is considered in the condition: A= 
D # 0, C = B = 0. Actually, all above mentioned models were considered only in such 
similar situations. In these models one assumed about the existence of limiting surfaces 
of deformations (or loading) . It is equivalent to the requirement of finiteness of action of 
deformation fields . Then, for search of a configuration of a deformation field , it is necessary 
to solve t_he equation, which is a extreme condition of action L , 

JL[Aµ] = 0. (3.1) 

However, we have also other extreme condition for action 

J 4 - 2 - d xTr[(Fµv + ±Fµv) ], 

where Fµv is dual with Fµv· Because of that Tr[Fµv , Fµv] = Tr[Fµv, Fµv], we receive 

it like as in work of Belavin etc. [12], we are interested in importance of self-dual and 
self-antidual configuration of a deformation field. Thus, one of a extreme condition of 
action will be writter write down as 

(3 .2) 

Belavin etc. used this condition for giving the instanton of gauge field. So, instead of 
the equation (3.1) we shall solve a more simple equation (3.2). We use method in [11] for 
search of multi-instanton in special cases of plane deformation, when n, r = 1. Let the 
field of deformation A= Aµdxµ E Db(R4) 0 1, have an individual kind of 

Aµ(x) = iBµvOv(ln<f>(x)) , (3.3) 

where </>( x) - is a scalar function, and the matrix B µv looks like 

where 1T1 , 1T2 , 0'3 - are Pauli matrices . The gauge group is admitted as SU(2). Setting Aµ 
in expression (2.2), the condition of self-dual (3.2) will be as 
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or 
\72¢ 2 
¢ = 0, where \7 = OaOa . (3 .4) 

Using the method in [12] we receive the instanton, being the solution of equation (3.4): 
- instanton 

- multi-instanton 

A.12 
<P(x) = 1 + - 2 , 

Ix I 

N )... 2 

<P(x) = 1 + .2.: i 2 
i=l I Xµ - aiµ I 

(3.5) 

(3 .6) 

where aiµ , Ai - is any valid constant. Setting ¢(x) from (3.5) and (3.6) into (3.3) we receive 
t he deformation wave as matrices: 
- one-instanton 

multi-instanton 
N ,>.. 2 N 2 

Aµ(x) = -2iBµv(L JY;v)/(l + L ~), 
i Yi j I Yj I 

where (Yi)µ = (x - ai)µ, , .u = 1, 2, . . . , N . 

4. TOPOLOGICAL CHARACTER OF KOITER SINGULARITY 

What is the real nature of Koiter sector on the limiting surface of deformation. With 
the account of solution of instanton, this problem can be easily clear. Really, using this 
instanton, we receive topological Pontriagin number 

1 J 4 Q = ---2 d xTr[FµvFµv] · 
167r 

This number tells us, that during the process of plastic deformation the space of deforma
tion will be divided on Q independent sectors. Thus, limiting the surface of deformation, 
constructed in this space, is divided on Q parts, too . It is Koiter sectors described in 
works [1-3], [13-14]. We see, that t he occurrence of Koiter singularity has the topological 
reasons. Now we can say, the process of plastic deformation is a process of birth and 
distribution of solitons and like-solitons . It is necessary to notice, that the defect, from 
the point of view of fluctuation, is one of kinds of solitons. The soliton wave is considered 
as the concentrated located energy, which is distributed in space without dissipation with 
constant velocity. Thus, it will allow us to understand, why the plastic part of the stress 
- deformation diagram has t he horizontal form. 
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BIEN D~NG KHONG GIAO HO.AN v.A BAN CHAT TOPO CUA cAc 
KY D! KOITER 

Trang bai bao nay chung ta xay dvng mo hlnh bien d~ng deo khong giao thoa hoan 
va chung minh gii thiet Koiter. Chung ta da chi ra rang sv xuat hi~n cac diem ky di 
Koiter co nguyen nhan topo va cac diem ky di Koiter la so topo Pontriagin. 
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