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Abstract. Since earlier 30 years ago, Finite Element Methods (FEM) has become an 
indispensable tool of engineers for analysis mechanical behaviour of structures. Generally 
displacement models are used in most usual problems. Under certain material conditions, 
such elements may provide inaccurate results and exhibit slow convergence. Locking phe­
nomena are the cause of these problems and this situation could limit the computation of 
many kinds of structures. This paper presents a deep beam element based upon mixed 
formulation, which may illuminate these locking phenomena. 

1. INTRODUCTION 

Finite Element Methods is based upon the virtual work principle ("displacement 
models") [1] , it is easy for computation, however it may provide inaccurate results and 
exhibit slow convergence. This phenomenon is characterized by a severe underestimation 
of the displacements , e.g. the structural response is too stiff. Since the late 1970s the term 
locking is employed. 

The locking phenomena have some types, volumetric locking occurs in modeling nearly 
incompressible and incompressible materials, shear locking in bending dominated prob­
lems. Thereto, there are some other types of locking, such as membrane locking, thickness 
locking, in the framework of the paper, these types of locking are not discussed. 

By the effect of locking phenomena, FEM may provide inaccurate results and exhibit 
slow convergence. Therefore, so many methods are used for locking removal. Selective 
Reduced Integration method (SRI) has also been proved effective in overcoming the lock­
ing, e.g., by Naylor [13], Hughes, Malkus and Hughes [11], and others. It may produce 
rank deficiency [1 2], leading to the so-called zero-energy modes and unstable solutions by 
many situations . The Enhanced Assumed Strain method has been developed by many 
researchers, e.g., Simo and Rifai [14] , Simo and Armero [15] , Andelfinger and Ramn [7] , 
and others . However , the computation is t oo complicated. 

The mixed formulation for the nearly incompressible and incompressible materials was 
first introduced by Herrmann in 1965 [8] , then various mixed formulations were applied 
to rubber-like elasticity, plasticity and incompressible flow problem. The new mixed 
formulation in this work which will be discussed in this paper be applied a mathematical 
formulation for giving more accurate numerical solutions. 

2. WHAT IS LOCKING? 

Unfortunately, a unique, rigorous definition of locking does not seem to exist [3]'. From 
a most simple an general point of view one could state that: 

Locking means the effect of a reduced rate of convergence in dependence of a "critical" 
parameter. In the limit of the parameter being infinite, rate of convergence may be zero. 
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For example, in the case of transverse shear locking of plate elements, this parameter is 
the slenderness of the plate, in volumetric locking it is the bulk modulus. 

2.1 Volumetric locking 

The volumetric locking occurs normally in traditional displacement Finite Element 
Analysis (FEA) of 3D, axisymetric and plane problem. In fact, the effect of volumetric 
locking is not at all when v=O.O. Therefore, the plane stress problems are also influenced 
by a slight of volumetric locking. 

When Poisson's ratio v --+0.5 , the bulk modulus: 

E 
K,=---

(3-6v)' 
(2 .1) 

tends to oo. The ill-conditioning will occur in traditional displacement FEA of 3D, axisy­
metric and plane strain problems. This phenomenon is called Volumetric Locking. 

An infinite bulk modulus means that any deformation preserves the volume of in­
finitesimal portions of the body, in other words, the material behaves incompressible. 

In solid mechanics this effect can occur e.g. for rubber materials, but also for metals 
in the range of plastic deformations. 

The corresponding constraint when v=0.5 in elastic and plastic deformation 

Ev = U ,x + V ,y + W ,z = 0. (2.2) 

If the approximation spaces (i.e. displacement field) used for the formulation of a finite 
element are not well balanced, the corresponding constraint can not be vanished. 

2.2 Shear locking 

The shear locking can occur in shear deformation beam, plate and shell elements which 
is subjected to a pure bending situation. 

From the classical theory of elasticity, the shear strain must vanish: 

"fx y = U,y +v,x = 0, 

where u,y = 8u/8y , V ,x = 8v/8x 
Consider a 4-node element , with the field function defined as: 

u = ao + aix + a2y + a3xy, 

v = bo + b1x + b2y + b3xy, 

we can check the shear strain "fx y: 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

is generally non-zero, since the presence of inconsistent term a3 and b3. This does not 
satisfy with the coressponding constrain "fxy=O. 

Hence, it causes the so-called shear locking for the traditional displacement FEA. 
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2.3 The effect of locking 

The functional of the principle of minimum potential energy principle is written as 

Ilp = - c Dedo - W, 11 T 
2 S1 

(2.7) 

where E is the strain vector , D is the elasticity matrix and W is the term for body forces 
and boundary conditions. The integration is taken over the area of the whole domain [1] . 

In the case of plane strain, the Ilp can be written as 

r { ( 2 2) 1 2 v 2} Ilp = G Jo Ex + Ey + 2,lxy + 1 _ 2v Ev dO. - W, (2.8) 

with Ev= Ex +Ey · (2.9) 

The volumetric locking occurs when v ---70 .5 or v=0.5. 
Obviously, when Ilp is applied the numerical analysis, t he denominator (1 - 2v) con­

tained in it will make troubles as v ___, 0.5 or v = 0.5 . 

In the case of plane stress, the Ilp can be written as 

(2 .10) 

E and Gare the Young's and shear module and 

Ilp = IIE +Ila, (2.11) 

where IIE is the strain energy contribution from the normal strain and Ila comes from 
the shear strains. 

A deep beam will illustrate the accuracy of the element for plane stress structure [5] . 
From the classical pure bending theory of elasticity, the shear strain must equal zero [6] 
and the shear energy Ila must vanish. However, the shear strain is generally non-zero in 
traditional displacement FEA, that means the shear energy Ila can not vanish. This is 
the effect of shear locking in traditional displacement FEA. 

3. MIXED FORMULATION 

3.1 Introduction 

A new mixed formulation is proposed in this paper, it is based on the virtual work 
principle to associate with the locking consraints. In addition, the identity 1::::: ,8+(1-,8) 
is also used for the variation. In all the previous formulations in this part we use an 
irreducible formulation [2], using the displacement u as the primary variable. 

3.2 Mixed variational principle for plane stress elasticity (MVP) 

For plain stress problems, they are two-dimentional, the thickness is assumed to be 
unity for simplicity. 
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As the starting point , consider the well-known the virtual work principle [4] which 
were written as 

r &? DEdn - r P8udn - r P8udS = 0, 
~ ~ ~ 

(3.1) 

where n is the domain of the body considered, subjected to the body force F. 
The total boundary of n is s = Sp+ Su; on Sp is prescribed the surface traction P, 

while on Su the prescribed displacement u. 
D is an elasticity matrix containing the appropriate material properties. 

l
l I/ 

D- E v 1 
- (1 - v2) 

0 0 1 ~ v l 
E is the Young's modulus and v Poisson 's ratio. 
u and E are the displacement vector and the strain vector. 

u = [uv]T , 

E = [Ex Ey "fxy]T = [ ~~ av 
By 

8v + 8u]T 
ax By 

and Ev is the volume strain: 

Ev = Ex + Ey m V. 

The corresponding trace of stress tensor a is denoted by p: 

p = ax + a y in V. 

Ev and p are related by the volumetric constitutive law 

1-v 
' Ev - --p= 0 

E 

E 
or p - --Ev = 0 in V. 

1-v 

'Yxy and Txy are related by the shear constitutive law 

1 
'Yxy - G Txy = 0 or Txy - G"(xy = 0. 

G is the shear modulus 

G= E 
2(1 + v) 

Matrix D is splited into three parts 

[
200] [o 

D=G 0 2 0 +G 0 
0 0 0 0 Hl 2vG 

+--
1-v [0

11 . 1 OJ 
~ ~ ' 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3 .6) 

(3 .7) 

(3 .8) 

(3.9) 

(3.10) 
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2vG 
D = GDd1 + GDd2 + --Dv. (3.11) 

1-v 

The equilibrium equation (3.1) is rewritten using (3 .10) 

G j OE:T Dd1cdO + G j OE:T Dd2cdn + 1
2~~ j OET Dvcdn 

n n n 

- j F<5udn - j P<5udS = O, (3 .12) 

n Sp 

G j 6cTDd1cdO+G j OcTii"/xydn+ :~~ j OE:TfoE:vdn 

n n n 

-J F6udn - J P<5udS = 0, (3 .13) 
n Sp 

where 

Io= [1 1 o]r, 

Ii= [O 0 ljT. 

(3.14) 

(3.15) 

The identity 1 = f3 + (1 - /3), where f3 is a free parameter function of Xi over n, called the 
slitting factor, should be used to split the troubling coefficient 1/(1-v) into two parts [9]: 

1 1 1 
- = /3-+ (1-/3)-. 
1-v 1-v 1-v 

Since the splitting factor is arbitrary, let 

(3.16) become 

/3 = 1-v 

1 1 
--=l+v--
1-v · 1-v 

The equilibrium equation (3.13) is rewritten using (3.18) 

G J OE:T Dd1cdn + G J OE:T Ii "lxydn + 2vG J OE:T Iocvdn 

n n n 

2v
2
G/ T 1- 1-+ 

1 
_ v <Sc Iocvdn - Foudn - PoudS = o, 

n n ~ 

J T J T 2v2GJ T OE Df3c:dn + G <Sc: Inxydn + 
1 

_ v · Sc IoEvdn 

n n n 

- JF0udn - j PoudS = o, 
n Sp 

(3 .16) 

(3.17) 

(3.18) 

(3 .19) 

(3.20) 
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where 
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- [1 + v 
Df3 = GDd1 + 2vGDv = 2G ~ 

v 
l+v 

0 
(3 .21) 

Now the equilibrium equation (3.20) is rewritten using (3 .7) and (3.8), treating p and Txy 
as an independent variables, as 

j OET Df3 EdD + j OET Ii TxydD + 
1

: v j o_Er IopdD 
n n n 

- j Foudn - j P?udS = o (3.22) 

0 Sp 

and in addition we shall impose a weak form of (3.7) and (3.8), i.e., 

J [ v2 v
2 

( 1 - v) ] 
op l+vloE- E(l+v)p dD=O, (3.23) 

n 

J OTxy [lie - ~ Txy] dD = 0. (3.24) 

n 

In this paper u is expanded in independent bilinear functions in four-node quadrilateral 
elements show in Fig. 1: 

4(-1, 1) 1'l 1'l 
':lf 1 1) 
V\ I f 

-\3 I I }-
~ y.v I 

~ 

Li= L ~ ~ 
1( ~' 1\ ?I 1 -1) - I , - I} -, . , 

x, u 

Fig. 1. Physical and reference planes for 4-node quadrilateral. 

NEL 

u= L Ntai, (3.25) 
i= l 

NEL 

E = L Biai, (3.26) 
i = l 

ae = [u1 VI U2 V2 U3 V3 U4 V4]T , (3.27) 

N e = [~f 0 Ne 0 Ne 0 Ne 
~:] . (3.28) 2 3 4 

Ne 0 Ne 0 Ne 0 1 2 3 
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The element shape functions are given by 

where 

NZ = ~(1+eke)(1+1Jk1J) k = 1, 2, 3, 4, 

B =\JN, 

fJ 
0 ax 
fJ 

\7= 0 
al! ' a 

ay ax 

(3.29) 

(3.30) 

(3 .31) 

where NEL is the total number of elements , ek = ±1 and 'T/k = ±1 are the coordinates of 
node k in the reference plane ( e' 'T/) . 

The equations (3 .22) , (3 .23) and (3 .24) gives the mixed approximation in the form 

[~ 
c HJr} f'} -V 0 p = h ' (3.32) 
0 -L Tx y f3 

where 

A = J BT D f3BdD, (3.33) 

n 

C = J _:!_Erl dD 
1 + v 0 

' 

(3.34) 

n 

v - J v2(1- v) n (3 .35) 
- E(l+v)d ' 

n 

H = J BTJidD, (3 .36) 

n 

L= j ~dD , (3.37) 

n 

Ji = J NTFdD + J NTPdD, (3 .38) 

n n 

/2 = 0, (3.39) 

h=O. (3.40) 

All the integrals above are carried out in full integrating rule by 2 x 2 Gausian quadra­
ture in the reference plane. Solving equation (3.32) gives the nodal displacement vector 
a e, T xy and the trace vector p (double hydrostatic pressure in plane stress elasticity). 
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4. NUMERICAL EXAMPLES 

4.1 Patch test 

The Patch Test has been originally proposed in the mid of sixties as a simple means 
to prove the convergence of an element. Beside the theoretical analysis there is also the 
possibility of the numerical verification. The below example is the numerical verification 
of the Patch Test for plane stress element that was presented by Macneal R H in 1985 
[10] . 

• The geometry 

b 

Fig. 2. The geometry of plane stress problem 

Size a= 0.12 ; b = 0.24 ; thickness = 0.001. 

• Element meshing 

Table 1. The coordinates of nodes 

Nodes 
Coordinates 

x y 

1 0.04 0.02 
2 0.18 0.03 
3 0.16 0.08 
4 0 .. 18 0.08 

• Material 

E = 1.0 x 106
; v = 0.25. 

• Prescribed displacements of 4 nodes at 4 corners of the plate 

• Theoretical solution 

u = 10-3 (x + Y. ), 
2 

v = 10-3 (~ + y). 
2 

€x = €y = €xy = 10-3 ; Ux =Uy= 1333; Txy = 400 (Macneal RH, 1985) [10]. 
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• Numerical results and discussion 

Table 2. The results of MVP element 

Ele m ent Ex = Ey = Exy CTx =cry Txy 

1 10- 0 1333 400 
2 10- 0 1333 400 
3 10- 0 1333 400 
4 10- 0 1333 400 
5 10- 0 1333 400 

R eference 10- 0 1333 400 

Constant stress state is satisfactory. MVP element really pass the patch test . 

4 .2 T w o-dimensional plan stress problem 

A cantilever beam with the dimensions shown in Fig. 3 will illustrate the accuracy of 
the element for plane stress structures. Results for two different loading conditions and for 
some the different meshes are shown in Table 3. They are compared with exact solution 
and with the traditional displacement FEM. 

Load 
Load Load 

Case 2 

i 150 
Case 1 Case2 

1000 t 150 

2Il I :o~ E = 1500, = 0.25 

t 150 

A 
10 

Fig. 3. Cantilever beam - plane stress 

Table 3. Results of for problem in Fig. 3 

Displacement u2 at A 
Number of element Load case 1 Load case 2 

Udispm UMVP Udispm UMVP 

1 element 9.03 100 9.27 77.5 
5 elements 68.2 100 70.0 101.5 
10 eLements 85.7 100 88 .0 102.25 
15 elements 9Q.O 100 92.4 102.4 
20 elements 91.6 100 94.0 102.44 
100 elements 93.66 100 96.15 102.5 

Beam t heory 100 103 

(-)dispm stands for displacement FEM and (-)MVP stands for MVP element . 
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Obviously, from the diagram the shear locking effects the rate of convergence with 
traditional displacement FEM. The results of MVP element avoid the shear locking, this 
results are obtained by Matlab-Code. 

Load Case 1 Load Case 2 

100 103 

'E 'E 
" " E E 
" " 0 0 .!! .!! 

Q. Q. 

.!!! -e- u_dispm 
., 

-e- u_dispm 
0 i5 

....,._u_MVP ~u_MVP 

0 0 

0 20 40 60 80 100 0 20 40 60 80 100 

Number of elements Number of elements 

Fig. 4. The diagram of displacement with load case 1 and load case 2 

In fact, tlie effect of volumetric locking is not at all when v = 0.0. Therefore, the 
plane stress problems are not only effected by shear locking, but also effected by a slight 
of volumetric locking. So both contraints of volumetric locking and shear locking are asso­
ciated with the mixed variational principle. The three fields (u-p-Txy) mixed formulation 
is obtained. 

5. CONCLUSIONS 

In fact, the traditional displacement FEM has been ensured convergence to the correct 
result. Therefore, the simple way of locking removal is to employ a rather fine mesh, the 
correct result will be obtained. However, the amount of computation is too large. 

The traditional displacement FEA is based on the the virtual work principle. Gen­
erally, this method has not any constraint, in order to remove locking, the constraint of 
volumetric locking or the constraint of shear locking must add to the problem. The mixed 
formulation is mainly the method to solve the problem of the virtual work principle and 
the constraints. 

The mixed models in this paper are based on the virtual work principle to associate 
with the corresponding contraints and using the identity 1 = f3 + (1 - /3) for the variation. 
Above tests resulted in the following conclusions: 

· This method gives more accurate numerical solutions than those based on the tradi­
tional displacement FEM under the same number of elements. 

It avoids both locking phenomena: volumetric locking and shear locking. 
However, due to the limited time, the mixed models are only applied to the 2-D 

elasticity problems. The mixed models apply to 3-D, plate, shell and plasticity deformation 
problems . . . will be found in the other researches. 

This publication is completed with financial support from the National Basic Research 
Program in Natural Science. 
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HI~N T UQ'NG "NGHEN" TRONG PH.AN TICH PHAN TU HUU H~N 
' ..,.,. ~ ... , ' 

CUA "DAM NGAN" VA CACH LO~I TRU 

Tu hem 30 nam tm&c day, Phuang phap Phan tu Hfru he;in dii tr& thanh m<)t cong C\l 
khong the thieu duqc clia nguai ky SU' trong vi~c phan tlch ung XU CO' h9C clia ket cau. 
ThOng thucmg mo hlnh chuy~n v! duqc SU d\lng trong hau het cac bai toan. Du&i nhung 
dieu ki~n nao do, nhung phan tu nay CO the cho ket quit khong chfnh xac va S\f h<)i t\l 
ch~m. Nhung hi~n tuqng "nghen" fa nguyen nhan clia van de, va tre;ing thai nay co t he 
he;in che S\f tinh toan clia nhieu loe;ii ket cau. Bai bao nay trlnh bay m<)t phan tu "dam 
ngan" d~t tren CO' Sd clia mo hlnh hOn hqp, nham lam sang tO nhung hi~n tuqng "nghen" 
nay . 


