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IDENTIFICATION PARAMETERS OF MATERIAL 
MODEL AND LARGE DEFORMATION ANALYSIS OF 

INFLATED AIR-SPRING SHELL MADE OF 
RUBBER-TEXTILE CORD COMPOSITE 
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Abstract. In the paper an orthotropic hyperelastic constitutive model is presented which 
can be applied to numerical simulation for the response of biological soft tissue and of 
the nonlinear anisotropic hyperelastic material of the cylindrical air-spring shell used in 
vibroisolation of driver's seat. The parameters of strain energy function of the proposed 
constitutive model are fitted to the experimental results by the nonlinear least squares 
method. The deformation of the inflated cylindrical air-spring shell is calculated by solving 
the system of five first-order ordinary differential equations with the material constitutive 
law and proper boundary conditions. Numerical results of principal stretches and deformed 
profiles of the inflated cylindrical air-spring shell obtained by numerical deformation analysis 
are compared with experimental ones. 
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1. INTRODUCTION 

The composite materials created of rubber matrix reinforced by textile cords is called 
rubber-textile cord composites. Air-springs form an example of layered multiphase flexible 
composite structures that consist of rubbery matrix and stiff reinforcement made of textile 
cords. The high modulus, low elongation cords carry most of the load, and the low mod­
ulus, high elongation rubber matrix preserves the integrity of the composite and transfers 
the load. The primary objective of this type composite is to withstand large deformation 
and fatigue loading while providing high load carrying capacity. 

Recently, classical phenomenological constitutive equations for rubber-like solids, such 
as Mooney- Rivlin, Neo-Hookean or Ogden models (Beatty, 1987; Holzapfel et al, 2000; 
Bonet & Profit, 2000; Guo, 2001) are progressively replaced by more physical models 
based on statistical considerations in various engineering applications . The identification 
of material parameters of the constitutive models is often performed using classical ho­
mogeneous strain experiments ( uniaxial extension or pure shear tests for example) . For 
biaxial deformation, authors use frequently the bubble inflation technique, that consists in 
inflating an initially plane circular thin membrane (Verron & Marckmann, 2003) . In this 
type of experiments , deformations are not homogeneous and the analysis of experimental 
data needs efficient numerical method to solve the inflation problem. 

Motivated mainly by interest in the numerical simulation of hyperelastic materials 
some orthotropic and transversely hyperelastic constitutive models have been proposed 
recently. Most of them are represented by strain energy function formulated as a poly­
nomial (Bonet & Burton, 1998) or an exponential (Ogden et al, 2000; Holzapfel et al , 
2000, 2001) or logarithmic function (PoZivilova & Plesek, 2002) of orthotropic (or trans­
versely isotropic) strain invariants. However, the development of the constitutive theory of 
anisotropic elastic or viscoelastic materials at finite strains is still far to be completed and 
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the publications in this field are sparse. For the isotropic hyperelastic materials, the Ogden . 
model with a strain energy function formulated in terms of principal stretches has been 
shown to be of advantage in spite of a relatively complicated numerical realization. This 
model demonstrates an excellent agreement with experimental results at large strains and 
involves many other material laws , for example Mooney-Rivlin and Neo-Hookean ones as 
special case. Therefore, the orthotropic generalization of Ogden model enables to consider 
various anisotropic hyperelastic materials within a unified concept. 

The main purpose of the framework paper is identification parameters of the proposed 
orthotropic hyperelastic constitutive model and large deformation analysis of the inflated 
cylindrical air-spring shell made of rubber-textile cord composites. 

2. DESCRIPTION OF STRUCTURAL MATERIAL 
AND EXPERIMENTAL ANALYSIS 

An air-spring shell (Fig. 1) is usually made up of four layers - the inner and the 
outer layer of calandered rubber and the two plies of cord reinforced rubber in which the 
cords have a specific bias angle to the other arranged symmetrically with respect to the 
circumferential direction (Fig. 2). 
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!Upper collar 

4--.;__-J--- - cylindrical air­
spring shell 
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Fig. 1. Cylindrical air-spring shell 

The resulting material properties are orthotropic in the case of in-axis loading. The 
cylindrical air-spring is relatively short - the diameter of the tubular shell is 2R=82 mm, 
the height is L=120 mm and the wall thickness is H = 2 mm. The properties of the 
material and the angle between cords have to be determined experimentally in site since 
the air-spring is assigned for further experiments and it cannot be dissected for usual 
material tests. 

The experimental t ests were carried out at five different positions of the air-spring. 
First the mounting plates of the non-loaded air-spring were fixed at the distance by 15, 
20, 30, 40 or 50 mm shorter than the free height of the air-spring. Then the air-spring was 
loaded and unloaded gradually by pressurized air step 0.05MPa in the range O.l- 0.5MPa. 
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Photographs of the deformed sheet were recorded by digital camera, the axial force and the 
inne~pressure were measured and stored at every stage of loading. Digital photographs 
were rocessed semi-automatically by means of the Matlab image processing toolbox. The 
centr ids of deformed grid spots were calculated and the coordinates of contour . points of 
the eformed air-spring shell were recorded. The deformations of air-spring shell are 
deterJ!lined from the photographic records of the deformed grid of points drawn on the 
surfa~ of air-spring shell through digital image processing techniques. Details on the 
experimental setup and the experiment evaluations can be found in the previous papers 
of Mar~alova (Marvalova et al, 2001, 2002) 

Fig. 2. Textile cord reinforced circular tube of cylindrical air-spring. Continuum model for the 
structure of the orthotropic layer (with double-helically arranged fibers) . 

3. DEFORMATION OF INFLATED CYLINDRICAL MEMBRANE 

The main geometric features of the inflated membrane in according with the derivation 
of the works (Guo, 2001) are determined. The cylindrical air-spring shell at Fig. 3 has the 
initial radius of mid-surface R, and length L. Its initial wall thickness His assumed to be 
uniform. The undeformed profile of membrane is described by polar coordinate system, 
( X, <I>, R). The cylindrical membrane is inflated by the internal pressure p. 

The deformed cylindrical membrane is referred to the polar coordinate system (x , ¢, 
r). A material particle moves during the deformation from the position in the undeformed 
profile, C(X, <I?, R) to the deformed profile, c(x, ¢, r), along its quasi-equilibrium path. 
Assume that the deformation is axisymmetric, then ¢ <I> . The principal stretch in 
axial and circumferential directions , principal curvatures and geometric relations are 

ds 
>.1 = dS' 

r >.2::;: -
R' 

dr . n 
ds = - smu, 

dx 
ds =cos 0, 

d(} 

"'1 = ds' 
cose 

K2=-­
r 

(3.1) 
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where s is the arc length measured from pole (x = 0) to the particle c(x, ¢, r) along 
the meridian of the deformed profile. S is the length corresponding to s in the unde­
formed profile. An auxiliary variable e is introduced through the angle of the tangent 
line. The radius r and the thickness h of the membrane are with respect to the deformed 
configuration . The radial stretch >.3 is determined from the incompressibility constraint. 

then 
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Fig. 3. Undeformed and deformed profile of inflated cylindrical membrane 

4. THE PROPOSED ORTHOTROPIC HYPERELASTIC 
CONSTITUTIVE MODEL 

(3.2) 

(3.3) 

The formulation of the anisotropic constitutive model has the main advantage that 
all involved material parameters may be associated with the material constituents, i.e. 
matrix materials and the fibers . The orthotropic hyperelastic materials in this paper are 
considered incompressible composite materials with two families of fibers . Let's assume 
the isochoric deformation and neglect the dissipation due to irreversible effects. The free 
energy of the orthotropic hyperelastic materials considered is stored in the matrix material 
and fibers. Thus, a proposed strain energy function considered the combination of scalar­
value functions corresponding to energy stored in matrix material and the fibers parts. 

\Ii = \Ii iso + \Ii aniso , ( 4.1) 

where Wiso is the component of strain energy function for isotropic properties of materials. 
\Ii aniso is the component of strain energy function for anisotropic properties. 

The isotropic component of strain energy function may be involved by the strain energy 
function of Ogden's model (Ogden, 2001) as 

3 

Wiso = W iso (.-\1, A2, .-\3) = L µn (>.fn + A~n + A~n - 3) 
n=l On . 

(4.2) 
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where >.1, >.2, and >.3 are the three principal stretches. The parameters µn and an of 
Ogden's model of rubber (Holzapfel, 2000) are 

µ1 = 0.63 M Pa, µ2 = 0.0012 M Pa, µ3 = -0.01 M Pa, 

a1 = 1.3, a2 = 5, a3 = - 2. 

Suppose that the reinforcing fibers are double-helically arranged in the matrix mate­
rial symmetrically to the circumferential direction then the component of strain energy 
function for anisotropic property is expressed in terms of principal stretches in the form 
of exponential function 

k1 { [ ( 2 2 2 . 2 )2] } '1! aniso = k
2 

exp k2 >-2 cos ')' + >.1 sm ')' - 1 - 1 , (4.3) 

where 2')' is the angle of the two families of reinforced fibers , k1 is stress-like material 
parameter and k2 is a dimensionless parameter (Holzapfel & Gasser, 2001). They are 
determined from the experimental results and from the 2D cylindrical membrane approx­
imation. The angle I of fibers is supposed to be 48.8°. 

The strain energy stored in the fibers is assumed to be governed by an exponential 
function described above. The strain energy function with the component for isotropic 
properties of Ogden's model in two dimensional problem with incompressibility constraint 
can be supposed in the form 

3 

w(A.1 , A.2) = 2= µn (A_fn + ,X_~n + A.1an A.2an - 3)+ 
n=l O'.n 

+ ~~ { exp[k2(A.~ cos2 'Y + >.f sin
2 

'Y - 1)2
] - 1} (4.4) 

5. IDENTIFICATION OF MATERIAL PARAMETERS 

Constitutive equations are the stress-strain relationships for the deformed membrane. 
If the strain energy function I]! is an invariant, we may regard '1! as a function of the princi­
pal stretches Aa (a= 1, 2, 3). In engineering practice, such an equation can be represented 
by strain energy function, I]! (A.1, A.2, A.3). The principal Cauchy stresses associated with 
this deformation are given from strain energy function (Holzapfel, 2000) 

* aw 
era= -p + Aa8>.a' a= 1, 2, 3 (5 .1) 

where p* is the indeterminate Lagrange multiplier (hydrostatic pressure). The relation­
ships of the invariants Ii, 12 and !3 and principal stretches are also defined in the form. 

Ii = A.f + A.~ + A.~ 
h = A.r >-~ + >-~>-5 + >-5>-r 
Is = >-r >-~>-~ 
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By regarding inflation two of the stretches as dependent and treating the strain energy 
as a function of these through the definition w(>.1, >-2), the constitutive equations are 
obtained 

- - ).. 8'1'(>.1 , >.2) 
0'1 0'3 - 1 8>.1 ' 

_ _ , 8w(>.1, >.2) 
0'2 0'3 - /\2 8>.2 ' 

- - \ 8'1'(>.1, >.2) - \ 8'1'(>.1, >.2) 
0'2 0'1 - /\2 . 8>.2 /\1 8>.1 . (5 .2) 

The theory of nonlinear membranes has been presented by Green and Adkins (1965) 
and applied to various inflated structures (Guo, 2001). The quasi-static equilibrium equa­
tions of problem are 

(5.3) 

(5.4) 

where T1 and T2 are the stress resultant forces per unit length of the meridional and 
circumferential directions. 11;1 and 11;2 are principal curvatures for the deformed membrane 
surface (3.1). Suppose that 0'1 and 0'2 are the principal Cauchy stress at the particle. 
According to the assumptions for the membrane theory (Green Adkins, 1965), the stress 
resultant forces in the deformed configuration are 

T1=h(0'1-0'3), 

T2 = h ( 0'2 - 0'3) . 

The stress resultant forces in the deformed configuration when neglected 0'3 are 

\'. Mre Cauchy stress s 0'1 and o :i are given by (5.1). 

(5 .5) 

The experimental series of the inflated cylindrical air-spring with the variable axial 
force F and the inner pressure p are effectuated. The Cauchy stress is determined from 
the equilibrium in Fig. 4 

p7rr2 - F 
O'l = 

21frhcos() 
N1 cos() = p7rr2 

- F ==> (5.7) 

By substituting r = >.2R and h = H / >.1>.2 from (3 .1) and (3.3) into (5 .7) the stress 0'1 
is obtained as 

(5.8) 
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(5.9) 

The stress 0-2 can be derived from equilibrium equations (5.4) and (5.5) in the following 
form 

(5.10) 

The stress 0-2 can be obtained by substitution of h from (3.1) and o-1 from (5 .6) into 
(5.10) 

pR 2 p 1 ( 2 F ) "'1 0-2 = >-1>-2 - --->.1 >-2R - -- - , 
H cos () 2H cos () 7r Rp "'2 

(5.11) 

According to the theory of inflated membrane the stress a 3 is assumed equal -p. 
After the substitution of the Cauchy stresses into equations (5.2) a set of the nonlinear 

equations for the two variables kl and k2 with the strain energy function presented in 
equation ( 4.4) is obtained as 

3 

L µn [>.rn - (>.1>.2) - an] + 4k1 exp(k2m2)m>.i sin2 a = C + p 
n=l 

3 

L µn [>.~n - (>.1>.2) - an] + 4k1 exp(k2m2)m>.§ cos2 a= p (D + 1) - c"'1 

n=l A;2 
(5.12) 

t µn [ >.~n - >.rnJ + 4k1 exp(k2m2)m (>.~ cos2 a - >.i sin2 a) = pD - C ( 1 + :~) 
n=l 

where 

p 1 ( 2 F ) pR 2 2 2 2 . 2 C =---()>.1 >.2R--- , D= ()>.1>.2, m=>.2cos a+>.1sm a - 1. 
2H cos 7rRp H cos . 

The experimentally measured val­
ues of >.1 and >.2 in ·several points of 
the central part of our cylindrical mem­
brane were substituted into the equa­
tions (5 .12). Taking the logarithm of 
(5.12) we will get a set of linear equa­
tions for the variables lnk1 and k2. The 
resulting overdetermined system of lin­
ear equations was solved in Matlab. The 
result of parameters in my calculated 
program were kl = 41.87MPa and k2= 
-23. 77. The function of the Helmholtz 
energy potential for these parameters 
is convex. 

Fig. 4. The equilibrium of inflated cylindrical 
air-spring under loads 



125 Identification Parameters of Material Model and Large Deformation . 

6. LARGE DEFORMATION ANALYSIS BY 
NUMERICAL INTEGRATION 

After the substitution of (3.1), (3.3), (5.1) and (5 .5) into equilibrium equations of (5.3) 
and (5.4) and by some simplifications the system of five ordinary differential equations for 
the principal stretches >.1 and >.2 , the tangent angle e, the coordinate x in the deformed 
configuration and the inner pressure p with respect to the coordinate X of the undeformed 
configuration is obtained as 

d>. 1 1 [>.1 sine (N _ A-2->.1>.2) +A sine ,\1 (>-2 _ B)Q] 
dX _A_ (>. 2 _ B) _ M R cos e cos2 e 2 

cos() 2 

d>.2 - 1 . 
dX = - >-1R . sme 

(6 .1) 

where 

3 
- 1 cos e { cos e [ ~ °'n -an 

Q - RA(>.~ - B) ~ - P + ~ µ.,,,(>.2 - (>.1>.2) )+ 

+ 4k1 exp(k2m2 )m,\~ cos2 a J - 2A>.1>.2} (6.2) 

1 3 

M = ,\
1 

Lµnan[>.fn + (>.1>.2)-°'n]+ 
n=l 

+ 8k1 exp(k2m2)>.1 sin2 a [ >.i sin2 a(2k2m2 + 1) + m] (6.3) 

1 3 
N =- Lµnan(>.1>.2) - °'n + 8k1exp(k2m2)>.i>.2sin2acos2a(2k2m2 +1) (6.4) 

,\2 n=l 

The set of differential equations (6.1) is solved by the shooting method in Matlab with 
the boundary condition for ,\~ and >.g determined from the experiments. The results are 
at the following figures where calculated stretches and deformed profile of a~r-spring shell 
is compared with experimental one. 

Fig. 5 describes the deformed profiles of cylindrical shell of air-spring under internal 
pressure p = 0,5 MPa with shortening length 15, 20 , 30, 40 and 50 mm. These results 
show that the deformation of material is large. The deformed profiles along the length 
of cylindrical shell subjected to different internal pressure are calculated and the results 
respond well to experimental responses. 
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/ Fig. 6 and 7 describe the axial and circumferential stret ch with shortening length 
15/mm under internal pressure p = 0.4MPa and 0.5MPa. The axial st retches in the 
c~lindrical shell are less t han 1 (shortening of t he shell due to t he inflation) and the cir­
cumferential stretches are greater than 1. The numerical results show that the constitut ive 
proposed material models are appropriate for the deformation analysis of the air-spring 
she\il made from the given composite material. 

60 --- - - - -- - -- -- - ~ ----- - - - --------,-- -- ---- - - - - -- -~------------ -- - , ------ --------- , ------------- - --: 
: : · : - 1Smm • 

..... 
0 40 

' ' ' ' ' 

' ' ' ' 

* experiment 
- 20 mm _________ ___ .. _______ _________ , _______ __ _ _ 
+ experiment 

- 30mm 
' ' ' ' ' ' ' ' 

~ experiment 
- 40 mm 
* experiment 

- SO mm 
+ experiment 

-Omm 
--- --- - ------------ -- --· 

' ' ' ' ' ' 

' . ' ' ' . . . --- -------- ---, -- ---- --- ---- --- ,. ------- ----- ---,--- -- ---- ------ -.- --- ---- --------, -- -- -- ------ ----· 
' I I < ' ' 
' I ' I 

' ' ' ' ' ' 

10 20 30 
X (mm) 

40 50 60 

Fig. 5. The deformed profiles with shortening length 15, 20, 30, 40 and 50mm under internal 
pressure p = 0.5 MPa 
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Fig. 6. The axial and circumferent ial Fig. 7. The axial and circumferential stretch 
stretch wit h shortening length 15mm un- with shortening length 15mm under internal 
der internal pressure p = 0.4MPa pressure p = 0.5MPa 

The examined air-spring is relatively short and the ends influence greatly its deforma­
tion. It is evident from the presented figures once the heads of t he air-spring approach 
together the deformed shapes become curved broadly near t he heads of air-spring. These 
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curved parts cannot be measured directly experimentally as they are not visible at recorded 
photographs. Thus the difference at these points between the estimated reality and the 
numerical simulation is not alarming. Whereas the accordance of numerically simulated 
and experimentally measured stretches and shapes is satisfactory in the central portion of 
the air-spring. 

7. CONCLUSIONS 

This study was conducted in respect of the mechanical response of a thin-walled cylin­
drical shell of air-spring under combined inflation and axial force with reference to funda­
mental continuum mechanical principles. The problem of the identification of the material 
parameters was solved. The proposed strain energy function was implemented into the 
calculus of deformations of the inflated cylindrical air-spring shell. The deformations were 
determined by numerical solution to the system of ordinary differential equations based 
on the membrane theory. Numerical results for simulation of the inflated cylindrical mem­
brane are obtained answering by experimental responses . 
Acknowledgement . This publication is completed with financial support from the Na­
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NHAN DANG cAc THAM so CUA MO HINH VAT LIEU vA PHAN 

Tfcii BIE~ D~NG LON cu A vo LO xo KHi NE~ LA~ BANG v ~ T 
LI1~U COMPOSITE NEN CAO SU COT SQ'I 

Tuong bai bao nay m()t mo hl.nh tr9'ng thai cho v~t li~u sieu dan hoi trvc hu&ng duqc 
trl.nh bay ma co th~ ung di,mg cho mo ph<'>ng so nhung ung XU cua mo mem sinh hQC va 
v~t li~u sieu dan hoi trvc hm'.mg phi tuyen cua VO trl,110 XO khf nen dung trong giam chan 
cua ghe oto. Cac t ham so cua ham nang lm;mg bien d9-ng cua mo hl.nh tr9-ng thai de xuat 
dU'Q'C xac dinh tu nhfrng ket qua thl,l'C nghi~m bang phuang phap bl.nh phuang nhb nhat 
phi tuyen. Bien di;tng cua VO trl,1 cang phong lo XO khi nen duqc tinh toan bang vi~c giai 
h~ nam phuang trl.nh vi phan thm'mg v&i qui lu~t tr9'ng thai v~t li~u va cac di~u ki~n 
bien thich hqp. Cac ket qua so cua d9 dan chinh va bien di;tng cua VO trl,1 cang phong 10 
XO khf nen nh~n dU'Q'C bang each phan tich bien d9'ng SO va dU'Q'C SO sanh v&i cac ket qua 
thvc nghi~m. 




