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Abstract. The contribution is devoted to using so-called non-generalised coordinates for 
deriving the system of equations of motion. Differently from common techniques for con­
strained mechanical systems the principle of compatibility is chosen as the tool. This takes 
the advantage in the possibility for extension to systems with nonideal constraints, however, 
the special treatment is needed. In the article the author derived the theoretical basis as 
well as numerical algorithms concerning the combination of nongeneralised coordinates with 
the principle of compatibility. Some comparisons of the technique under consideration and 
usual technique using Lagrange multipliers are discussed. Some examples are shown for 
illustration. The case of contact of moving disc on the surface is given in detail 

1. INTRODUCTION 

As known the configuration and the motion of mechanical systems are described 
by a set of coordinates. Various coordinate systems can be used, therefore the sets of 
coordinates and equations of motion are different to each other. Commonly we can call 
them, regardless to the physical meaning, as generalised coordinates and use them for 
deriving equations of motion. 

Since generalised coordinates describe the configuration of mechanical system, each 
coordinate is related to the mass properties of the system. For each coordinate we dispose 
of one equation of motion in the form of a differential equation of second order. There­
fore, if the system is determined by n generalised coordinates we get the system of n 
differential equations. Obviously, if these coordinates are not independent, the constraint 
equations are added to the existing system of differential equations. The system is called 
the constrained mechanical system, see e.g. [1], [4], [9], [17], [24], [27] etc. 

In engineering applications there exists a class of problems where another set of pa­
rameters, so-called non-generalised coordinates, is added to the set of coordinates. These 
coordinates are auxiliary parameters, which, together with generaht>ed coordinates, de­
scribe the geometry or other conditions of the mechanical system. 

The example of the use of non-generalised coordinates is a contact problem in multi­
body dynamics. The position of the contact points can be predicted on line during the 
dynamic simulation by using the nongeneralised coordinates, .in this case also called sur­
face parameters, that describe the geometry of the contact surface, see e.g. [18], [28], etc. 
No inertia forces are associated with these surface parameters . However, the contact con­
straints are formulated in terms of the system of generalised coordinates and the surface 
parameters: two points on the two 'contact surfaces coincide or the normals to the two 
surfaces at the point contact are parallel. Another example is the control problem with 
control parameter in the differential equation of motion. The constraint equations in­
clude only generalised coordinates that are defined in advance according to the predefined 
trajectory, see e.g. [7], [11], [16], etc. 
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From these examples we can see the important difference between generalised and 
non-generalised coordinates. For each generalised coordinate one equation of motion in 
the form of a differential equation is derived, but no equation of motion is generated for 
nongeneralised coordinates, since no inertia forces are associated with them. Therefore, 
the nongeneralised coordinates do not increase the number of differential equations of 
motion. 

In this contribution we will derive the theoretical basis and numerical algorithms for 
using of nongeneralised coordinates for deriving the system of equations of motion. The 
principle of compatibility and concerning aspects are considered. This principle has an 
advantage over other ones in the possibility of application even for the system with non 
ideal constraints, see e.g. [12] , [24], etc . Some examples will be discussed for illustration 
in the section 4. 

2. NONGENERALISED COORDINATES IN THE 
SYSTEM OF EQUATIONS OF MOTION 

Let consider a mechanical system with n generalised coordinates. The number of 
degrees of freedom of the system can be equal or less than n . Suppose that for this 
mechanical system we have m nongeneralised coordinates . The number of constraints for 
this system, therefore, is greater than m. To emphasise that there are m nongeneralised 
coordinates, we denote the number of constraints for the system is (s + m), with s > 0 
and n > s. Hence the degree of freedom of the system is ( n - s) . 

We will use the principle of compatibility to derive the system of equation of motion 
for the considered constrained mechanical system. The theoretical basis and numerical 
algorithm are discussed in e.g. [4], [12], [19], [24], etc. Here the resulted equations are 
extracted directly and we will use them for deriving the basic system of equations with 
nongeneralised coordinates. 

Since there are n generalised coordinates, n equations of motion can be derived in 
the form: 

Aq=h+rq (2.1) 

where A is the (n x n)-dimensional matrix of inertia, q is the (n x 1)-dimensional vector 
of generalised acceleration, h is a (n x 1)-vector which absorbs all forces acting on the 
system, excluding the constraint forces , rq is the (n x 1)-dimensional vector of constraint 
forces , corresponding to the generalised coordinates q. 

If we denote the vector of nongeneralised coordinates asp which is a (m x 1).-vector, 
( m + s) constraints for the system can be written: 

g(q, p , t) = 0 (2 .2) 

where g is an (m + s)-dimensional vector. 
In total (2.1) and (2.2) give (n + m + s) equations, in which the unknowns are: 

generalised coordinate q , nongeneralised coordinate p and generalised reaction force r. 
Keep in mind that generalised reaction force r has ( n + m) · elements, corresponding to 
( n + m) generalised and nongeneralised coordin8:tes, i.e. : 
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r = [~;] . (2.3) 

The number of unknowns is (2n + 2m) and the system of (2.1) and (2.2) is not closed. 
Other auxiliary equations should be available for defining uniquely unknowns q, p and r. 

Obviously, the technique for checking the auxiliary conditions depends on the spe­
cific problems and on the properties of constraints. For example, for the class of control 
problems where the requirements are implied to the control forces, these conditions can 
be written directly. Similarly, for the contact case with friction the relation between the 
normal and tangential force could be used. In these case' we call them the system with 
nonideal constraints 

In the most case of engineering applications for the class of the workless constraints, 
i.e. the reaction forces do not perform any virtual works, we can find the auxiliary equation 
by using the criterion of ideality of constraints. Note that this assumption is implicitly 
applied for all cases with Lagrange multipliers . The approaches described in [8], [19] etc. 
can be applied in order to get the auxiliary equations. However, in the considered <;ase 
the application is more complicated due to existence of m nongeneralised coordinates. 

Using pseudoacceleration and the criterion of ideality of constraints leads to the 
equation, see [19]: 

(2.4) 

Matrix D in this case is an ( n + m) x ( n - s )-dimensional matrix which can be interpreted 
as a matrix of coefficients of generalised accelerations q and p in relation with ( n - s) 
pseudoaccelerations. 

Since r has two parts rp and rq , we can split D into submatrices Dq and Dp : 

(2.5) 

or 

(2 .6) 

where Dq is an n x ( n - s )-dimensional matrix and Dp is an m x ( n - s )-dimensional 
matrix. The equation (2.4) can be 'Yritten in the form: 

(2.7) 

Matrix D can be formulated in the similar way described in [19], using constraint 
equations in combination with pseudoaccelerations. Therefore: 

GD=O. (2.8) 

where G is the Jacobian matrix of constraint g from (2.2). Note that the dimension of G 
is (m + s) x (n + m). We also can split the matrix G into two submatrices: 

(2 .9) 
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where Gq is an (m + s) x n-dimensional matrix. The equation (2.8) ·can be written in the 
form: 

(2 .10) 

Basing on (2 .8) or (2 .10) the techniques describes in [19], [21] can be used to derived 
Dor Dq and Dp. Then the matrix equation from the condition of ideality (2.4) is available 
for the mechanical system under consideration. 

· In the case of the system having only generalised coordinates, the equation of the 
condition of ideality of constraints creates, together with constraint equations and dif­
ferential equation of motion, a closed system, which can be solved numerically. In the 
considered case, equation(2.4) performs (n-s) equations, so in total with (2 .1) and (2 .2), 
only 

n + ( m + s) + ( n - s) = 2n + m 

equations are available for 2n+2m unknowns p, q, r. We should look for other m equations 
in order to close the system. 

The answer for this question is simple if we recall that r has two parts: r q and 
rp . The reaction forces rp co.rrespond to the nongeneralised coordinates p for which no 
equations of motion are generated. According to the principle of compatibility it implies 
that : 

rp = 0. (2 .11) 

This matrix equations give m algebraic equations and -the system of equation is 
closed. But more interesting is a fact that rp appears only in (2.7) and (2 .11) and not in 
the equations of motion. Therefore (2.4) and (2 .11) give: 

(2 .12) 

and the system of equations (2 .1) , (2 .2), (2.12) performs the mixed system of (2n + m) 
differential-algebraic equations for also (2n + m) unknowns: rq, q , p. 

The obtained system of differential-algebraic equations can be solved by numerical 
techniques. This problem is intensively investigated by many researches with specialisa­
tion in mathematics, numerical mathematics and mechanics see e.g. [2], [3], [5], [6], [14], 
[23], [26] etc. It is worth noting that the system of differential-algebraic equations (DAE) 
disposes quite different properties in comparison with the system of ordinary differential 
equations (ODE) and requires a special treatment. Among important aspects we can em­
phasise the problems on index, instability on constraints (drift phenomenon), consistency 
of initial conditions of unknowns etc. 

Since for .the case of mechanical systems with ideal constraints the more familiar 
approach is using Lagrange multipliers, we can convert above results to the equations 
using these multipliers for comparison. 

Let .A be the column vector of Lagrange multipliers .A= [.>..i], i = 1, ... , m+ s, where 
the number of multipliers corresponds to the number of constraints. As shown in [20] 
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the relation between the reaction force r and Lagrange multipliers A in the case of ideal 
constraints is: 

(2 .13) 

According to (2.3) and (2.9) r and G are split to the submatrices, (2 .13) can be 
written in the form: 

or 

[~;] = [~fl .X 

r q = G~.X 

r p = G~A. . 

Putting r q and r p to (2 .1) and (2 .11) we have: 

Aq= h + G~.X 

GTA=O p 

(2 .14) 

(2.15) 

(2.16) 

(2.17) 

(2 .18) 

The system of equations {2 .17) , (2 .18) and constraint (2 .2) creates a closed system 
of (n + 2m + s) differential-algebraic equations for (n + 2m + s) unknowns q , p , .X. The 
system can be solved again by numerical techniques . 

It is interesting to compare t he number of equations and unknowns. The numbers 
of equations and unknowns for t hese two approaches with principle of compatibility and 
Lagrange multipliers are different again, (2n + m) in the case of the principle of compati­
bility and ( n + 2m + s) in the case of Lagrange multipliers. This will imply the fact that 
the approach with Lagrange multipliers could have more equations arid unknowns when 
the number of nongeneralised coordinates increases, i.e. if: 

m > n- s. (2. 19) 

It is unlike t he case without nongeneralised coordinates where using t he principle of com­
patibility leads always to the system with more unknowns than the system with Lagrange 
multipliers. 

3. GENERALISED REACTION FORCES IN A SPECIAL CASE 

Now, we will investigate further the reaction components belonging to the specific 
constraints, which are added to t he system due to the presence of the nongeneralised 
coordinates. Such part icular investigation is possible using t echnique described in [20] . 
But , below, we will proceed in another way. 

For t he sake of simplicity we assume, firstly, that the number of constraints under 
consideration is equal to the number of nongeneralised coordinates, i.e.: 

s = o. (3.1) 
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Hence the system has n generalised coordinates, m nongeneralised coordinates, n 
differential equation and m constraints: 

Aq=h+rq 

g=O 

(3.2) 

(3 .3) 

As discussed above, with ideal constraints the reaction rq is associated with the 
matrix Dq that is generated from the Jacobian matrix G of the constraints g. We can 
consider two cases of constraints (3 .3): 

g(q, t) = 0 

g(q, p, t) = 0 

(3.4) 

(3.5) 

In the 2. case the Jacobian matrix G as well as Gp and Gq are assumed to be full 
rank. Using the technique described in [19], the matrix Dq could be derived and is full 
rank. For the case under consideration Dq has the dimension (n x n). The system of 
(2.12) , (3 .2) and (3.3) creates the system of 2n equations for 2n unknowns r and rq . The 
nonsingularity of Dq implies that : 

rq = 0. (3.6) 

In the first case nongeneralised coordinates p appear only in the equation of notion 
(3.2). They could be, for example, the controls and the mechanical system should follow 
the trajectory (3.4). Clearly, one get s: 

(3.7) 

In this case the condition (2 .8) leads only to the matrix D with (n-m) independent 
columns. Hence, equation (2.12) gives only (n - m) independent relations. However, even 
in this case we can write the relation (3 .6) , since m variables appear in the equation (3.2) . 
We get again the closed system of nonlinear equations. 

For both cases, the reaction forces of constraints (3 .3) are zero. So the system of 
(3 .2) and (3.3) is reduced to : 

Aq=h 

g = O 

(3 .8) 

(3.9) 

which performs the mixed system of ( n + m) differential-algebraic equations for ( n + m) 
unknowns q and p . 

This conclusion is important and it could be extended for the case when the system 
is constrained by more conditions than m. It is out of scope of this contribution but we 
can raise the fact that the system of constraints can be split into two groups. The first 
group is used to construct differential equations of motion and the equation (3.6) is valid 
for the components of the reaction forces that are corresponding to the second group of 
constraints, see [21], [22]. 

From the point of view of numerical solution, the conclusion is interesting too. The 
system of equations (3.8) and (3.9) can be solved by using the technique for ordinary 
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differential equations (ODE). For each integration step the algebraic equation could be 
solved by using Newton-Raphson method for nonlinear equations. It means that the 
implicit numerical procedure for evaluating all values of unknowns can be implemented in 
the algorithm. 

4. ILLUSTRATING EXAMPLES 

In order to illustrate the theoretical basis we will consider some modelled application 
with nongeneralised coordinates. The first example is the contact problem of the disc on 
the surface. In general case the surface of a body is described by two parameters and for 
the point contact problem of two bodies we have in total four nongeneralised coordinates . 
For illustrating purpose we examine the simplified planar model of one circular disc with 
radius r that is moving on the curve ground with the radius R. The contact point of two 
bodi~s is not known in advance at each time instant and we should determine its position. 

For the planar curve each point is determined by one parameter in regard to the body 
fixed frame. In moving body 2 we use the angle ( that denotes the angle of radius vector 
CP with the negative axis 0 2y2 (P is the contact p.oint, the origin of body fixed frame 
02 and the centre of gravity C coincide). In non-moving body 1 this parameter is angle 
<p denoting the angle between the radius vector 01P and the negative axis 01x1. Besides 
of two nongeneralised coordinates () and <p the configuration of the system is defined by 
3 generalised coordinates Xe, Ye and W that determine the position and orientation of the 
moving body 2 in the inertia system Oxy (Fig. 1): Xe and Ye are the coordinates of the 
centre of gravity of body 2 and w is the angle of x-axis of the body fixed frame and x-axis 
of the inertia system. 
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Fig. 1. Contact of rolling disc on the surface 
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The system has 2 DOF and we look for 3 constraillt equations that are derived from 
the contact of two bodies 1 and 2. Clearly, in this case n=3, m=2, s=l. 

Two constraint conditions are derived from the fact that the positions of contact 
points of two bodies coincide. We can obtain for non-moving body 1: 

[:f::] = [-R:.::91+R]. ( 4.1) 

The subscript P denotes the coordinates correspqnding to the point P and the 
superscript 1 denotes the body 1. 

For body 2, the body fixed frame moves and we can write: 

[x~
2 )] [ cos w sin w] [ r sin() ] [Xe] 

y~2 ) = - sin W cos W · -r cos() + Ye 
(4.2) 

Hence 

[:f ::] = [:: ] + r [ _s:~~e--~iiJ · (4.3) 

The third equation is derived from the orthogonality of the normal and tangent of 
the contact surfaces, i. e. 

(4.4) 

where t(l) is the tangent of the first surface and n(2) is the normal of the second surface. 
It is easy to calculate the normal t(l) and n(2): 

and 

Hence 

t(l) = [sin cp] 
cos 'P 

n(2) = [ sin(() - w) J 
- cos(() - w) 

From (4.4), (4.5) and (4.7) we have: 

tCl).n(2) = sincpsin(e - w) - coscpcos(() - w) = 0 

and it yields: 

cos ( () - 1/J + 'P) = 0. 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Equations of motion can be easily obtained with 3 generalised coordinates. Using the 
principle of compatibility we have: · 

mxe = Fx + rx 

mjje = Fy + ry 

Je'l/J = M + r ?j; 

(4.9) 

(4 .10) 

(4.11) 
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where rx, ry and r'ljJ are generalised reaction forces corresponding generalised coordinates 
Xe, Ye and 1/J; m and le are mass properties of moving body 2; Fx , Fy and M are the 
external forces in the direction of generalised coordinates. 

In order to close the system of equation for 8 unknowns Xe, Ye, 'lj;, rx, ry, r'ljJ, e, cp 
we have to look for last two equations. They are derived from the condition of ideality of 
the constraints as described in the theoretical part. Matrix G in this case is: 

-rcos(e- 'lf; ) 
r sin(e - 'ljJ ) 

sin(e - 'lf; + cp) 

- Rsincp 
- Rcoscp 

- sin( e - 'l/J + cp) 

cos(e - 'lf;) l 
-rsin(B - 'lf; ) 

- siri(8 - 'ljJ + cp) 

From this we get 

DT = [ . 0 0 1 0 
0
1] 

r cos( 'ljJ - B) + R sin cp r sin( 'ljJ - B) + R cos cp 1 1 

Hence 

r'l/J = 0 

[rcos('lf;- B) + Rsincp]rx + [rsin('lf; - B) + Rcoscp]ry + r'l/J = O 

(4.12) 

(4.13) 

( 4~14) 

(4.15) 

The system of equations (4.3) , (4.8)-(4.11) , (4.14) and (4.15) is a mixed differential­
algebraic system of 8 equations for 8 unknowns: Xe, Ye, 'lj;, rx , ry, r'ljJ, e, cp . At each time­
instant reaction forces, position and orientation of bodies, as well as the position of contact 
point can be determined by numerical integration of the considered system of equations 
of motion. 

We can extend the example to the case of rolling without slipping. One more 
constraint can be applied: 

re - Rep= O (4 .16) 

and the system has only 1 DOF, i.e. n = 3, m = 2, s = 2. 
Another example .is the control problem when, the control parameter appears in the 

equations of motion, see e.g. [13], [25]. The mechanical system is enfc~ced to follow a 
predefined trajectory of generalised coordinates that creates a constraint for the system. 
Therefore in the constraint equations there are only generalised coordinates. The control 
parameter is the nongeneralised coordinate and could be a parameter of the system or 
the control force. Again, no inertia forces are associated with these control parameters. 
Nongeneralised coordinate appears in the differential equations. This is the case we discuss 
in the section 3. 

5. CONCLUSION 

In this article we discussed the using of a set of parameters , so-called nongeneralised 
coordinates, for deriving the system of equation of motion. Since no mass properties of the 
system are related with these coordinates, in comparison with generalised coordinates, no 
more differential equations are generated. These parameters are used for describing the 
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constraint conditions applied to the system. The conditions may include e.g. the contact 
constraints or control forces etc. 

· With different properties, in comparison with the system without nongeneralised 
coordinates, the system with them needs a specialised treatment when applying the prin­
ciples of mechanics for deriving the system of equation. Commonly, the method of La­
grange multiplier is usually used, however, the condition of ideality of the constraints is 
assumed. In this contribution we have dealed with the principle of compatibility which 
takes the advantage in the possibility for extension for systems with nonideal constraints. 
The theoretical derivation of equations is evolved in the section 2. As the result we get the 
system of differential-algebraic equations and the number of equations is in sometime less 
than the number of equations obtained by the technique with the Lagrange multipliers. 
This situation never occurs with the generalised coordinates . 

The obtained system can be solved only by numerical methods on computers with 
special techniques for the system of differential-algebraic equations. It is interesting to 
consider the specialised case when the number of nongeneralised coordinates is equal to 
the number of constraints. In this case the technique for the system of ordinary differential 
equations can be used, instead of the algorithm for the system of mixed differential­
algebraic equations that is very useful conclusion from the point of view of numerical 
solution on computer. 

For illustration we discussed some modelled problems with nongeneralised coordi­
nates. The detailed example is devoted to the contact problem when the surface param­
eters are nongeneralised coordinates. With these parameters the position of the contact 
point , not known in advance, can be evaluated on line at each time instant with other 
quantities. The planar model was shown, however, we can apply the algorithm for the 
three dimensional model. 
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NGUYtNL~PHDHQPVACACTQAD¢KH6NGSUYR¢NG 

Bai bao de c~p den vi~ SU di,mg cac tham so duc;rc g9i la cac t9a d9 khong suy r9ng 
trong vi~c xay di,mg cac phuong trlnh chuyen d9ng cua cac CC'! h~ ch!u lien ket. Khac 
v&i cac phuang phap thucmg duc;rc SU di,mg, bai bao da dung nguyen ly phu hqp de xay 
di,mg phuang trlnh. PhuC'lng an nay cho phep ma r9ng ap di,mg ca v&i cac h~ ch!u lien 
ket khong ly tucmg, tuy nhien cac phuC'lng trlnh CC'! s& phai GU'Q'C XU ly d~c bi~t . Tac gia 
da xay dvng CO' s& ly thuyet cling nhu cac thu~t giai lien quan den vi~ SU dl,lng cac to0 
d9 khOng suy r9ng cling v&i nguyen ly phu hqp. M9t so so sanh gifra phuC'lng phap duqc 
xay di,mg va phuC'lng phap SU dl,lng nhan tu Lagrange da duqc chi ra. M9t so vf dv duqc 
phan tich nham illl,lC dfch minh hQa, trong GO tm(mg hqp tiep XUC Cua ma chuyen GQng 
tren m~t cong duqc xet m9t each chi tiet. 




