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Abstract. The inverse problems for determining the meridian shape or varying thickness 
function of momentless shells of revolution under given loads were concerned in many works 
[2 , 3, 4]. However, for the complexity of loads or configuration of a shell these problems 
haven ' t bee.n solved perfectly because of its mathematical difficulties. 

In this paper, the problem for determining the thickness function of shells of revolution 
such as a parabola, sphere arc! under axisymmetrical loads is considered. The general 
integro-differential equations for determination of the meridian form and shell thickness are 
obtained. A solution of differential equations by semi-analytical and numerical methods 
for the thickness is presented. The numerical solutions are given for the parabola under 
external pressure, the sphere immerged in the fluid and the sphere arc. Obtained results 
may be used in the thin shell design. 

1. THE MOMENTLESS THEORY OF SHELLS OF REVOLUTION 
SUBJECTED TO AXISYMETRICAL LOADS 

The equilibrium equations are of the form [1]: 

l 
ddTs + (Tc: _ Ts) sine + X = O, 

· s r 

Ts+ T'P = z . 
Ri R2 ' 

(1.1) 

· where Ts and T'P are membrane forces , R 1 , R2 are curvature radii of the shell, e is the 
angle between the tangential line of the meridian and the Oz axis , X, Z - the external 
load components, r - radius of the hoop circle. 

For the shell of revolution we have following useful relations [1]: 

de 1 
ds' R2 

cos e dr = - sine· 
r ds ' 

d ( 1 ) ( 1 1 ) sin e 
ds R2 = R<2 ~ R1 - r-. 

(1.2) 
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Then, t he relations between small deformations and displacements are: 

du w 
cs = ds + R

1
' 

- sin() w 
ccp = ---U + - . 

r R2 

(1.3) 

Corresponding to Hook theory, the strains cs in the direction of a meridian and cip is 
perpendicular to a meridian are related to the membrane forces by equations : 

{ 

E, ~ ~h (T, ~ vT,), (1.
4

) 

c cp - Eh (Tip vT8 ), 

where Eis the Young's moduls, vis the Poisson's ratio and his the thickness of the shell. 

2. THE DIFFERENTIAL EQUATION FOR DETERMINATION OF 
THICKNESS FUNCTION 

From the condition of zero bending stresses, i. e. the curvature change is equal to 
zero, we have: 

dw u 
hence - - - = 0. 

ds Ri 

Xs = - ! ( ~: -;J· = 0, 

X =_sin() (dw _ .:!._) = O, 
'P r ds R1 

Substituting t his relation into t he compatibility deformation equation and using (1.2): 

dc'P . (dw u) r - - ( c - cs) sm () - - - - cos() = 0. 
ds 'P ds Ri 

We receive the condition of zero bending stresses in the form: 

r deep - (c - cs) dr = 0 or d(rc:cp) = cs · 
ds 'P ds dr 

(2.1) 

The condition without bending stresses in the shell , is represented by the deforma­
tion~. It is the basic relation to estab.lish differential and integro-differential equations for 
determination of the shell thickness and meridian form. 
The general solut ions of the equilibrium system (1.1) have a form [1] : 

T, ~qc+j(z+ ~)rdr]~ , 

T, ~Zr~+ [c+ j (z + ~)rdr] :~ ' (2.2) 
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'Yhere: rt= 1/ cos(}= sece. 
Constant C may be found from the following conditions: 
At the boundary r = ro, Ts = T2, so that 

C = T2ro cos eo, (2.2a) 

At the other boundary r = r 1 , if Q is resultant of vertical load components with 
intensity Pz, whic!i are parallel to axis of revolution, then the condition will be: 

27rC = 27rT2ro cos ea = -Q 

(2 .2b) 

The differential equation for thickness shell will be given by substituting (2.4) into (2.5) 

(2 .3) 

or 

The solution of which has the form: 

(2.4) 

where inner forces Ts and Tep are determined from (2.2). 
Substituting (2.2) into (1.4) and (2 .1) , we obtain the integro-differential equation for 

determining the shape of shells: 

2 d
2

ry [ ( rdh) ( 2 r
2 
X ) J dry 

r I dr2 + r I 1 - hdr + 2r z + R-=---1 dr + 

[ 
2 3 dh (rvdh ) r

2
vZ 3 dXJ + 'r/ 2r Z - r Z- +I -- - 1 - + r - .= 0, 

hdr h dr R-=---1 dr 

where: I= J r(z + ~)dr + C 
ro y '1)2 - 1 

Note that if the meridian form rJ and external load components X, Z are known, the 
equation (2.3) also can be given directly from this general integro-differential equation. 
The inner forces (2.3) in fact depend on the shell meridian form rJ and external load 
components X, Z. They can be expressed in the clearly analytical form only for cases in 
which the integral can be analytically realized. We consider thickness solutions (2.4) for 
some different external loads and shells of revolution. 
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3. DETERMINATION THE THICKNESS h = h(r) FOR THE SPHERE 
SHELL SUBJECTED TO DIFFERENT LOADS 

a. Consider a sphere shell of radius R, immerged in fluid with the mass density 
"'( and a is the height of the fluid to the sphere boundary top (Fig . 1), then the external 
forces are [5]: 

where a+ e = 7r/2. 
For the sphere we have: 

Pz = 1(a + R - Rsine), 

X = -1(a + R- Rsine) sine, 

Z = - 1(a + R- Rsine) sine. 

r; = R/r, sine= JR2 - r 2/R, r;/dr = -R/r2. (3.1) 

Substit uting these values into (2.2) and integrating it, we have the stress resultants: 

R { r2 R2 } 
Ts(r) = r2 1R [(a + R)VR2 - r 2 + ~ + c] , 
Tcp(r) = 1[a + R- JR2 - r2JJR2 - r2 -T8 (r) . (3.2) 

Note t hat, the force T8 acting in the boundary r 0 = R is: 

(3.3) 

In other hand, constant C may be found from (2.2b): 

(3.4) 

where Pz is the force intensity at the r = r1: 

Pz = 1(a + R- Rcosa1), 

COSC\!1 = vl -(~)2. 
Consequently constant C and T~ will be defined. 

The function h(r) can be given by substituting (3.1), (3 .2) into (2 .4) and integrating 
this expression by Simpson's method. The values of function h(r) are obtained in discrete 
numerical form. 

The numerical example is realized with the following geometric and load parameters: 
ro = R = l.3m;ho = O.Olm; 1 = 9810N/m3;a = lm;r1 = r(ai) = 0.5m;v = 
0.33; C = - 5395.5 N, T2 = -4150.38 N/m, T~ = 4150.38 N/m. The discrete results 
and graphical form are presented in the Fig. 1. 

Note that, in t his case, when the shell is immerged in the fluid, t he thickness values 
decrease from the top of the shell to its bottom. 



r(m) h(r) (m) 

0.5 0.06408 

0.54 0.05759 

0.58 0.051 86 

0.62 0.04673 

0 .6~ 0.042 1 

0.7 0.03789 

0.74 0.03401 

0.78 0.03042 

0.82 0.02707 

0.86 0.02393 

0.9 0.02097 

0.94 0.01816 

0.98 0.01 549 

1.02 0.01 293 

1.06 0.01048 

I. I 0.008 12 

1. 14 0.00583 

11 8 0.00362 

1.22 0.00 144 
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Fig. 1. T he t hickness h(r) for sphere shell immerged in t he fluid 
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b . Consider the shell of revolution obtained from a sphere arc subjected to 
the uniformly external pressure p (Fig. 2) . 

In t his case, t he geometrical characteristics are [1 J: 

R1 = R ; R2 
__ __ r ___ Reas e - a 

cos e cos e ) 
1 R dry R 

=? ry= -- = --· 
cose r+a ' dr (r + a)2 ' 

T he external load components have t he form: 

Z = p = can st , X =O, C = T~ ro(ro +a) . 
R 

T hen t he stress resultants in the shell according to (2.2) will be: 

R p ( 2 2 ) T 0ro(ro + a) 
Ts= 2r(r+a) r -ro + s R ' 

r 
Tr.p = --[pR - Ts]· 

r+a 

Substit ut ing these forces into expressions (2.4) we can determine t he function h(r) 
Numerical example is illustrated for this type shell with the following geometrical and 
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loading parameters: 

ro = 0.5m r1=1.6m, ho= 0.02m R = 3.lm, a= 1.5m 

v = 0.33, p = -2100000N/m2
, r E [0.5m; 1.6m], T~ = O (N/ m). 

The results in the Fig. 2 show that the thickness at the boundary R needs approxi-
mately three times larger than the initial thickness at the r = ro. · 

r(m) h(r)(m) 

0.5550000000 0.0233096138 

0. 6 1 00000000 0.0266222915 I I ro~ I I 
0.6650000000 0.0299 178952 

I I r~/ 0.7200000000 0.0331816247 
I p 

0.7750000000 0.0364025094 
I 

r I / 
0.8300000000 0.0395724707 I I 

0.8850000000 0.0426856398 I I R 
I I 0.9400000000 0.0457378510 I I r1 

0.9950000000 0.0487262607 I a I 
I I 

1.0500000000 0.0516490563 I I 
I . I 050000000 0.0545052310 

I . I 600000000 0.0572944091 
h 

0.08 
1.2 150000000 0.0600167080 

~ 0.07 
1.2700000000 0.0626726298 ~ 0.06 
1.3250000000 0.0652629739 / 0.05 
1.3800000000 0.0677887690 / 0.04 
1.4350000000 0.0702512 171 / 
1.4900000000 0.0726516493 

0.03 

/ 0 .02 
1.5449999999 0.0749914903 r 

0.5 0.7 0.9 1.1 1.3 1.5 
l. 5999999999 0.0772722296 

Fig. 2. The thickness h(r) for _the shell subjected to uniform load 

4. DETERMINATION OF THE THICKNESS h = h(r) FOR THE SHELL 
OF REVOLUTION OBTAINED FROM OF PARABOLA ARC , 

SUBJECTED TO THE UNIFORMLY EXTERNAL PRESSURE p 

We consider t he parabola shell, its meridian equation is (Fig. 3) [5]: - . 

r 2 = 2a(h1 ~ 4), ( 4.1) 

a is parameter of the parabola, h1 is the height of parabola arc. 
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r(m) h(r)(m) 

2.3050000000 0.0272576333 

2.2100000000 0.0246650866 ~ z 
2. 11 50000000 0.0222208825 

2.0200000000 0.0199234126 ~-1'<vfe 
Ir f I\ 

..._._ 

1.9250000000 0.01 77709148 r 1.8300000000 0.0 157614459 \p 
1.7350000000 0.0138928526 ----1.6400000000 0.0121627376 I 

1.5450000000 0.0105684247 _ __ I _~C_ 
1.4500000000 0.0091069218 I 

1.3550000000 0.0077748841 
I 

1.2600000000 0.0065685804 

1.1650000000 0.0054838652 h 
0.03 

/ 1.0700000000 0.0045161621 
. 0025 

0.9750000000 0.0036604628 0.02 
/ 

0.8800000000 0.0029113500 0.015 
/ 

/ 
0. 7850000000 0.0022630490 0.01 

~ 
0.005 0. 6900000000 0:0017095163 

---------0 
0.5950000000 0.0012445694 0.5 1 1.5 2 

r 

0.5000000000 0.0008620598 

Fig. 3. The t hickness h(r) for t he shell of revolution 

Note that if z denotes the distance along the axis of revolution, then a relationship 
between r and z has a form: 

from (4. 1) and (4.2) we have 

dr ~ 
dz = ± V ry2 - 1, 

rd2 
rJ=y1+72 , 

dry = _ a
2 (l + a 2

) -1;2_ 
dr r 3 rf 

In this case, the external load components have the form: 

Z = p = const , X = 0, C = 0. 

(4.2) 

(4.3) 

(4.4) 

Substitute ( 4.3) and ( 4.4) into (2.2) , t he stress resultants in the parabola shell will be: 

T = '!!. · 1a2 + r2 
s 2 v ' 
. p a,2 + 27"4 

T<p ~ 2 J~2- + r2"' 

The function h(r) can be calculated by numerically integrating the expression (2 .4) . 
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This example aims to define the function thickness h( r) of the parabola shell with 
following geometrical and loading parameters: r0 = 2.4 m; ho = 0.03 m; a= 2.1 m; r 1 = 
0.5m; v = 0.3; p = 475000N/m2, T2 = 0 (N/m) . 

The given discrete values of solution h(r) are shown in the Fig. 3. 
Note that, the thickness at the boundary R = r 0 is larger than the thickness at the 

R = r1 (r1 < ro). 
The similar problems may be solved by obtained calculating programs. 

5. CONCLUSION 

In this paper, the differential equation for determining the thickness function of shells 
of revolution under axisymmetric loads is presented. This equation is solved by semi­
analytical and numerical methods . The thickness functions of many different shells of 
revolution as parabola shell, sphere shells immerged in fluid under different loads are 
given in the discrete value tables or in the graph forms. The solutions of these inverse 
problems may be used in structural design. 

This work is completed with financial support of the Council for Natural Science of 
Vietnam. 
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HAM no DAY cu A c.Ac vo TRON xoAY DANG PARABOL v A vo 
·c.Au cH~u TAc DlJNG cuA TAr uoi xuNc TRlJc 

Bai bao da giai m9t l&p bai toan nguqc xac dtnh ham d.9 day cD.a cac VO tron xoay 
nhu VO parabol, VO cau ch!u tai doi xung trvc. Phmmg trlnh vi tich phan chung xac dinh 
hl.nh d0ng duang sinh VO va d.9 day VO da GlrQ'C dua ra. N ghi~m cD.a phmmg trlnh ham 
d.9 day da duqc tinh bang phmmg phap nua giai tich va so. Cac thi dv so da GlrQ'C thvc 
hi~n cho VO parabol ch!u tai phan bo deu tac dvng vuong goc len m~t vo, VO cau ngam 
trong chat long, VO quay bang m9t cung cau quanh tn,ic each tn,ic z m9t khoang a. Cac 
ham d.9 day nh~n GlrQ'C bang cac chmmg trlnh tinh toan va ket qua cho duoi d0ng bang 
so cac gia tr! rai ri;i,c ho~c do th! . Cac ket qua co th~ dung tham khao trong thiet ke VO 
mong. 




