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ANALYSIS OF SOME NONLINEAR DETERMINISTIC 
OSCILLATORS USING EXTENDED AVERAGED EQUATION 
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Abstract. The paper presents an application of extended averaged equation approach in 
investigating some nonlinear oscillation problems. The main idea of the method is briefly 
described and numerical simulations are carried out for some nonlinear oscillators. The 
results in analyzing oscillation systems with strong nonlinearity show advantages of the 
method. 

1. INTRODUCTION 

The method of moment equation is well known for analysis of random nonlinear os­
cillation phenomena and gives also good approximate solutions for systems with strong 
nonlinearity [15-16] . One way of extension the method to deterministic oscillation sys­
tems was given in [17] . In this paper, an extended averaged equation for deterministic one 
degree-of-freedom systems is presented and then some nonlinear oscillations are investi­
gated in detail. The numerical results give good approximate solutions for the systems 
with weak, and strong nonlinearity. 

2. EXTENSION OF MOMENT EQUATION METHOD TO 
DETERMINISTIC NONLINEAR VIBRATIONS 

In order to describe briefly the main idea of the extended averaging approach which 
was presented in [17], one considers a oscillation of one-degree-of-freedom system governed 
by a nonlinear differential equation 

z+f(z , z) =O, (2 .1) 

where dots denote time differentiation, f(z, z) is a nonlinear function of z , z. At the same 
time, consider the corresponding linear equation 

x + k2 x = 0. (2.2) 

For an arbitrary differentiable function w(t, x, x, z) using equations (2 .1) and (2.2) , 
one gets . 

dw 8w 8w . 8w . 8w . 8w 2 - = - + - z + - . (-f(z , z)) + - x + - . (- k x) . 
dt ot oz oz ox ox 

(2 .3) 

Denote the averaging operator (Borgoliubov & Mitropolskii) [1-3] as 

T 

. 1 J < . >= hm T (.)dt. 
T-+oo 

(2.4) 

0 
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Suppose that 

Thus , one gets 

Here, we consider functions in the polynomial form 

W = r(t) zmxn, W = r(t)zmin , W = r(t)zmxn, 

W = r(t) zmxn, W = r(t)xmi n, W = r(t)imxn, 
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(2.5) 

(2.6) 

where m , n = 0, 1, 2, ... and r(t) is a function oft. It should be noted that the equation 
(2.6) could be referred to as an extended averaged equation, which is similar to the moment 
equations in the theory of random vibrations, where the averaging operator is taken in the 
probabilistic sense [4], [15-16]. The advantage of the equation (2 .6) is that this equation 
can be applied to weakly and strongly nonlinear systems since the condition of small 
nonlinearity of the system is not used for establishing the equation (2.6) . Furthermore, 
the equation (2.6) contains both the response z(t) of the original system and the response 
x(t) of its corresponding linear system. Thus, it can express links between the responses. 

In order to close a set of averaged equations one needs some additional relations 
between the variables . For instance, in the classical equivalent linearization and averaging 
methods one puts z(t) = x(t) [1-3] . Then, in these techniques, x(t) represents only a 
linear system while z(t) is from a nonlinear one. One way of overcoming this deficiency 
to express the response z in a polynomial form 

(2.7) 

Thus, the problem is reduced to the problem of determining x(t) (or of determining 
k2 ) and the parameters a 1 (i =1 , 2, ... ). In other words, the problem of solving differ­
ential equation is reduced to the problem of solving a system of algebraic equations. For 
application, some nonlinear oscillation systems are investigated. 

3. NUMERICAL SIMULATION ON SOME NONLINEAR OSCILLATORS 

3.1. Oscillator with high nonlinearity degree 
Consider the oscillator described by a nonlinear differential equation as follows 

i + z + c: z3 + 'Y z5 = 0, 

z (O) = zo , 

z(O) = 0, 

together with its corresponding linear equation. 

(3.la) 

(3.lb) 

(3.lc) 

(3.2) 
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Now, in the equation (3.la), one has 

j(z) = Z + Ez3 + "(Z5. (3.3) 

Consider the case where W does not depend on t . Taking " the lowest" polynomial functions 
w(z,; i, x, i:) from (2.6) , one gets , for example: for 

< i 2 > - < z f ( z' i) > = 0 for W =zi, (3.4) 

< x f( z,z) > - < zx >= O for W =xi, (3.5) 

< i: f( z, z) > +k2 <xi>= 0 for w =xi , (3.6) 

< i f (z, z) >= o for \JI= i 2 / 2, (3.7) 

...... ........ .... ..... .... ..... .. ... .. 

The equation (3.4), (3. 7) are conventional averaged for original variables z, i while the 
equation (3.5) , (3.6) contains z, i, x, i: . 

Here, we establish the response of the nonlinear equation (3.1) in the form 

z (t) = x (t) + ax3 (t), (3.8) 

where x(t) is the solution of the equation (3.2), namely, 

x = acoscp , <p =kt. (3.9) 

For a T -period solution z(t), one gets 

T 2n 

< . >= ~ J (.)dt = 2~ J (.)dt. (3 .10) 

0 0 

Using (3 .lb)-(3 .lc), (3 .8)-(3.10), after some calculations , from the equations (3.4), (3.5) 
one obtains the following equations: 

819207f2a2 - 4096a2T 2 - 448rn4T 2 - 55"(a6T 2 
- 983047f2zoa - 8192zoaT2

-

- 1280Ezoa3T 2 
- 210"(zoa5T 2 + 1474567f2z5 - 20480z5T2 

- 2688Ez5a2T 2
-

525"(z5a4T2 - 5376cz5aT2 - 1100"(z5a5T 2 
- 14784cz6T 2 

- 2145"(z6a2T 2
-

- 4290"fz8aT2 
- 12155"fz8T 2 = 0 (3.11) 

163847f2 
- 4096T2 

- 384rn2T 2 
- 45"(a4T 2 

- 40')'zoa3T 2 -

- 2688cz2T 2 - 330"'z2a2T 2 
- 2145"'z4T 2 = 0 (3 12) 0 I 0 I 0 ' . 

with two unknowns: the amplitude a and the period T (or the frequency k) of x (t). 
As a result , the solution z(t) of the original nonlinear system (3.1) can be obtained 

from (3.8) . The period Tp obtained by the proposed method is compared with the exact 
period TE in the Table 1 for zo = 1 and different values of E and "( . 
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Table 1. The period of free oscillation of the system 3.1 

c = I Te Tp error 
0.1 5.9023 5.8912 - 0.193 
1 4.1320 4.1173 0.363 
10 1.6916 1.6772 - 0.853 

100 0.5545 0.5491 -0.973 
1000 0.1759 0.1741 - 13 
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Fig. 1. Graphs of the free oscillator with higher nonlinearity 
a. withs= 1 = 0.l ; b. with s = 1 =l 

c. with E: = I = 10; d. with c: = "( = 100; e. wit h c: = I = 1000. 
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The graphs obtained by the proposed method and by numerical simulation are pre­
sented in the Figures 1 (a - e). 
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It can be seen from the Table 1 and from the Figs. l.(a - e) that the proposed method 
can give results with very high accuracy for the weakly nonlinear systems as well as for 
the strongly nonlinear ones. Furthermore, it should be noted that for 'Y = 0, we, again, 
obtain the Duffing oscillator which was investigated in [17] . 

3.2. Oscillator with absolute term in nonlinearity 

Consider the oscillator governed by a following nonlinear differential equation 

i + z + c:zlzl = 0, 

z (O) = zo, 

i (O) = zo, 

together with its corresponding linear equation 

x + k 2x = 0. 

Now, in t he equation (3.13a) , one has 

J( z ) = z + c:z lzl. 

(3.13a) 

(3.13b) 

(3 .13c) 

(3.14) 

(3 .15) 

Using (3.13a)-(3.13b), (3.8)-(3.10) , after some calculations, from the equations (3.4), (3.5) 
one obtains the following equations: 

1 9 2 3 2 5 22 1 2 8 3· - -wa + -wk - -wak + -wa k - -wa - -w sign(a)-
4 8 4 8 8 63 
512 64 32 5 

-
315

c:sign(a) -
105

wsign(a) -
105

w 2sign(a) - 8w = 0, (3 .16) 

3 3 2 1 22 1 2 8 3 - - wa + -7tak + -wa k - -wa - -w sign(a)-
4 4 4 4 35 
64 . 64 . 

-
105

w 2s1gn(a) -
35 

ws1gn(a) = 0, (3 .17) 

with two unknowns: the amplitude a and the frequency k (or the period T) of x(t). As a 
result, the solution z(t) of the original nonlinear system (3.13) can be obtained from (3 .8) . 
The period Tp obtained by the proposed method is compared with the exact period TE in 
the Table 2 for zo = 1 and different values of E. 

The graphs obtained by the proposed method and by numerical simulation for different 
values of E are presented in the Figs. 2.(a - e). It can be seen from the Table 2 and from 
the Figs. 2.(a ~ e) that the proposed method can give results with very high accuracy for 
the weakly nonlinear systems as well as for the strongly nonlinear ones. 

Table 2. The period of free oscillation of the system 3.2 

E TE Tp Error 
0.1 6.037 6.0327 - 0.0007% 
1 4.6357 4.6282 - 0.0016% 

10 2.0534 2.0521 -0.00063 
-50 0.9617 0.9602 - 0.0016 3 
100 0.6843 0.6830 - 0.00193 
500 0.3075 0.3069 - 0.002 3 
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Fig. 2. Graphs of free oscillator with absolute term in nonlinearity 
a. E = 0.1; b. with E = 1; c. with= 10; d. with E = 100; e. with E = 500. 

3.3. Self-excited oscillator 

Consider the VanderPol oscillator 

i + z + c(z2 
- l) i = 0, (3 .18) 

together with its corresponding linear system 

x + k 2x = 0. (3.19) 

Now, in the equation (3 .18) , one has 

f( z, i ) = z + c(z2 
- l) i . (3.20) 

In order to close a set of the equations , as well as to express the non-linearity of the 
solution z(t) of the nonlinear equation (3.23) , we propose 

z(t) = x(t) + ad: (t) + {3x2 (t)x(t) , (3.21) 
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where x(t) is the solution of the linear equation (3 .19). Substituting (3.21) into equations 
(3.4) - (3 .7) and using (3 .9), (3.10) , after some calculations, one obtains the following 
equations: 

64k2 + 8rn4 k4a 2 /3 - 16rn2k2 /3 + 8rn4k2 /3 + 30.72rn8k4 /33 + 

+ 16rn2k4a 3 +3rn6k4a/32 + 16rn2k2a - 64ck2a - 64 = 0, 

- 5rn6 k2 /32 
- 16a2/3 -16rn2 + 64k2a + 16a2k2 /3 -

- 16rn4k2a/3 - 16rn2k2a 2 - 64a + 64c = 0, 

8k2 + 5a4k4 /32 
- a4 k2/32 

- 8k2a 2+ 

+ 8k4a 2 + 4a2k 4a/3 - 4a2k 2a/3 - 8 = 0, 

272a6k2/32 + 128a2 
- 512 + 512a4k2a f3 + 256a2k2a 2

-

- 320a4k2/32 + 128a2k4a 4 + 6484 k4af33 + 112a6k4a /32
-

- 256a2k2a/3 - 512k2a 2 + l3a10k4 f34 = 0, 

(3.23) 

(3 .23) 

(3.24) 

(3.25) 

with the 4 unknowns: the amplitude a, the frequency k (or the period T) of x(t), the 
solution polynomial coefficients a and /3. 
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Fig. 3. Graphs of Vanderpol oscillator 
a. with c; = 0.1; b. with c:= 1; c. with c:= 5; d. with c:= 10. 
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As a result, the solution z(t) of the original nonlinear equation (3.18) can be obtairted 
from (3.21) . The oscillation amplitude Zp and the oscillation period Tp obtained by the 
proposed method are compared with the simulation quantities Zs and Ts in the Table 3 
for different values of E . 

Table 3. The period of the Vanderpol oscillator 

E zs z p(error) Ts Tp(error) 

0.1 1.9950 1.9997 (0 .00233) 6.2949 6.2871 (-0.00123) 
1 2.0080 1.9739 (-0.0173) 6.6628 6.4901 (-0.0263) 
5 2.0212 2.0641 (0.023)) 11.4562 11.9872 (0 .0463) 
10 2.0141 2.0982 (0 .043) 18.8690 19.7828 (0.053) 

The graphs obtained by the proposed method and by numerical simulation are pre­
sented in the Figures 3( a-d). 

It can be seen from the table 3 and from the graphs in Fig. 3(a - d) that the results 
(amplitudes , periods, ... ) of the Vanderpol oscillator obtained by the proposed method 
are very close to the ones obtained by numerical simulations in the weakly nonlinear cases 
as well as in the strongly non linear ones. 

4. CONCLUSION 

The paper presents in detail the extended averaged equations involving the variables of 
the original noµlinear and of the corresponding linear systems as well as the representation 
of a periodicc solution of nonlinear systems by a polynomial of harmonic solution of its 
corresponding linear systems. Thus, a possible way to determine the solution polynomial 
coefficients and the linear system can be derived. The proposed method can be applied to 
both stochastic oscillations and deterministic oscillations. The extended averaged equation 
is established not using the condition of small nonlinearity. Thus, the method can be 
applied to weakly nonlinear systems and strongly nonlinear ones, as well. Numerical 
simulations are carried out in some nonlinear oscillators . The obtained results of the 
method give good approximate solutions for the systems with weak, middle and strong 
nonlinearity. 
Acknowledgement.The research has been supported by a grant of the Fundament Re-
search Program in Natural Sciences. · 
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AP DlJNG PHUONG PHAP PHUONG TRINH TRUNG BINH SUY 
RQNG TRONG vr¢c PHAN TICH MQT s6 H:¢ DAO DQNG PHI 

TUYEN 

Bai bao trlnh bay vi~ sl'.r dvng phmmg phap phucmg trlnh mo men - phmmg phap dong 
CUa llnh V\J.'C dao Q(~mg ngau nhien trong vi~C nghien CUU m(>t SO h~ dao a(>ng phi tuyen 
tien <:"4nh m9t b~c tv do. Thong qua h~ m9t b~c tl! do , bai bao tom luqc y tm'mg chinh 
cua phuang phap "phuang trlnh trung blnh suy r9ng" va each bieu di en nghi~m cua h~ 
dao d(>ng phi tuyen du&i dl?-ng da thuc cua nghi~m cua phuang trlnh tuyen tinh tucmg 
ung. Cac ket qua mo phong so cua ky thu~t nay tren m9t so h~ dao d(>ng phi tuyen cho 
ta thay U'U diem CUa phm:mg phap aoi v&i cac h~ CO UQ phi tuyen yeu va ml?-nh. 


