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ON A FORM OF LYAPUNOV EXPONENTS 
(II: VERIFICATION AND ILLUSTRATION) 

NGUYEN VAN DINH 

Institute of Mechanics 

Abstract.The form of Lyapunov exponents proposed in the part I is verified and illustrated 
by examining some differential equations with well-known exact solutions. 

1. INTRODUCTION 

Having shown that Lyapunov exponents - the average rate of exponential expansion 
or contraction - defined in [1] as: 

>.(yo)= lim ln(liy(t)il/llY(O)ll) 
t ---+ oo 

(1.1) 

can be expressed through the unit vector u(t) = y(t)/lly(t)ll , that is 

t 

>.(uo) = lim ~f u'(T)A(T)u(T)dT. 
t ---+oo t 

(1.2) 

0 

In this second part, for verification and illustration, we present some examples in 
which, exact solutions of the differential equations under examinat ion are well-known. 

2. LYAPUNOV EXPONENTS ASSOCIATED 
WITH EQUILIBRIUM STATE IN AUTONOMOUS SYSTEM 

In this case: 

X(t) = c (constant) or Xj(t) = Cj (j = 1, 2, .. . , n) , 

A(t) = [Ajk] is a constant matrix with elements 

Ajk = 8Fj(c1 , c2, . .. , cn)/axk (j , k = 1, 2, . . . , n) . 

(2.1) 

(2 .2) 

As known [2], the structure of the disturbance y(t) (solution of the equation of variation) 
depends on the roots of the characteristic equation 

IA - xII = o, (2.3) 

and Lyapunov exponents associated with the equilibrium state (2.1) are the real charac­
teristic roots and the real parts of conjugate complex characteristic roots. 

Do not verifying and illustrating (1.2) by a general presentation we examine only some 
concrete examples. 

Example 1. Consider the equation of variation 

Yl = Yl ' Y2 = Yl + Y2 - Y3 ' Y3 = Y3. (2 .4) 
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The matrix A and the characteristic equation are: 

[
l 0 0 l A= 1 1 - 1 
0 0 1 [

1- x 0 
IA - xII = 1 1 - x 

0 0 
0 l - 1 

l - x 
= (1 - x) 3 = o. (2 .5) 

X = 1 is the unique characteristic root of multiplicity 3. Since rank [A - xI] = 1 we have 
3 - 1 = 2 groups of solutions respectively corresponding to two eigenvectors (solutions of 
the equation [A - xI]a = 0) 

a1=(a,0, a) and a2 = (0, /3, 0) , (2.6) 

where a, /3 are two arbitrary constants. 
The first group contains only one solution expressed through a 1 , that is: 

Y1 = aet, Y2=0, Y3 = aet. (2 .7) 

The second group contains two solutions expressed through a 2 , that is: 

Y1 = Y3 = 0, Y2 = {3et (2.8) 

and 

Y1 = 1 et, Y2 = {3tet, y3 = (r - {3)et (2.9) 

where / is a new constant. 
We have 

.\(u) = u'Au = ui + u2u1 + u~ - u1u3 + u~ 
= (ui + u~ + u~) + u2(u1 - u3) = 1 + u2(u1 - u3). (2.10) 

The differential equations governing the variation of the unit vector u(t) = y(t) /ll y(t) II are 

u1 = u1 - .\( u)u1 = -( u1 - u3)u2u1 

U2 = U1 + U2 - U3 - ,\(u)u2 = U1 - (u1 - U3)u~ 

u3 = u3 - .\(u)u3 = -(u1 - u3)u2u3. 

The solution (2 . 7) gives rise to a constant solution u of (2.1) that is 

aet aet 1 
U1 = - = = - U2 = 0 

llYll et.J a 2 + a 2 vf2 ' ' 
1 

U3 = vf2 

The solution u corresponding to (2 .8) is also a constant vector 

U1 = U2 = 0 , U3 = 1. 

However, the solution (2 .9) gives rise to a varying solution u : 

I 
U1 = ~ ' 

{3t 
u2 = ~ , U3 = 

(r - /3) 
~ 

where ~ = )12 + (J2t2 + (r - (3)2. 

(2.11) 

(2.12) 

(2. 13) 

(2.14) 
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Using (1.2), from (2.12) or (2 .13), (2.14), we can verify that A= 1. For instance, with 
(2.14). 

t t t 

. 1 J . 1 J { {3T [ "( ("! - {3) ] } . 1 J A=hm - >.(u)dT=hm- 1 + -;\ A -
6 

dT=hm- dT=l. 
t-oo t t-oo t u u t - oo t 

(2.15) 

0 0 0 

Example 2. Consider the equation of variation 

YI = YI + Y2' iJ2 = Y2 - Y3' Y3 = Y2 + Y3 . (2 .16) 

We have 

A= [~ 
1 

l-x 
1 

-1 0 l = (1 - x) ( (1 - x) 2 + 1) = o. 
l-x 

(2.17) 

There are one single real characteristic roots x 
complex characteristic roots 1 ± i. 

1 and a couple of single conjugate 

Since 

the differential equations governing u are 

Corresponding to x = 1, the eigenvector is aI (a, 0, 0) and the solution y is 

YI = aet, Y2 = Y3 = 0 

(2.18) 

(2 .19) 

(2 .20) 

The last equation give rise to a constant solution uI = 1, u2 = u3 = 0 from which, using 
(1.2) we can easily verify that A= 1. 

Corresponding to conjugate complex characteristic roots 1 ± i, we have: 
- Two conjugate complex eigenvectors 

a2(f3, if3 , (3) and a2(f3, -if3, (3). 

- Two corresponding real solutions 

- f3 t YI = e cost, 

:::: f3 t . t YI = e sin , 

- Two varying solutions u: 

_ cost 
UI =U3 = T ' 

sint 
u2 = - -

6 

- f3 t . Y2 = e smt, Y3 =YI, 

:::: f3 t Y2 = e cost, 

and 
sin t 

UI =U3 = ~ , 
cost 

u2= T , 

(2.21) 

(2 .22) 

(2 .23) 
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where~= vi -tcos2 t. 
From (2 .23) we can verify (1.2): 

t t 

, 1. 1 !( ~ ~ )d 1. j ( sin T cos T) d /\ = Im - 1 + U 1 U2 T = lill 1 + 2 T 
t --+oo t t --+oo 1 + COS T 

0 0 
t 

. 1 j d(l + cos2 t) . 1 
= 1- hm - 2 = 1 - hm -ln(l + cos2 t) = 1. 

t -->oo 2t 1 + COS t t --+oo 2t 
0 

3. LYAPUNOV EXPONENTS ASSOCIATED WITH PERIODIC 
MOTIONS 

(2 .24) 

In this case X(t) is a periodic vector function with periodic T, A(t ) is a periodic matrix 
and the structure of y(t) depends on the logarithm of the roots p of the characteristic 
equation 

IP - pII = 0, (3.1) 

where Pis a constant matrix connecting a fundamental matrix solution Y(t) of the equa­
tion of variation and its "derived" Y ( t + T). 

Example 3. Consider the equations of variation 

Yl = (1 + cos t)y1 + Y2, 
Y2 = Yl + (1 +cos t)y2, [

1 +cost 1 ] . 
A ( t) = 1 1 + cos t 

It is easy to verify the following two linearly independent .solutions 

(3.2) 

yp) = esint, y~l) = - esint with 0 as Lyapunov exponent, (3.3) 

Yi2) = e 2tesint, y~2 ) = e 2tesin t with 2 as Lyapunov exponent . (3.4) 

We have 

>.)u) = u'Au = (1tcost)ui+2u11f2 + (1 + cost)ur= (1+cost)+2u1u2. (3 .5) 

Hence, the differential equations governing u are: 

il1 = (1 + cost)u1 + u2 - >.(u)u1 = u2(l - 2ui), 

il2 = u i + ( 1 + cos t) u2 - ,\ ( u) u2 . = u i ( 1 - 2u~). 

The solution (3.3) gives rise to a constant solution u: 

esint v'2 
U1= =-J ( esin t) 2 + ( _ esin t) 2 2 ' 

u2 = - y'2 2 . 

(3.6) 

(3.7) 
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Using (3.7) we calculate the corresponding Lyapunov exponent 

t t t 

>. = lim ~ J >.( u)dT = lim ~ /(1 +cos T + 2u1 u2)dT = lim ~ J cos TdT = 0. (3.8) 
t->oo t t ->oo t t ->oo t 

0 0 . 0 

The solution u corresponding to the solution (3.4) is: 

and its Lyapunov exponent is equal to 2. 

Example 4. Consider the equations of variation 

iJ1 = (1 + cost)y1 - (1 + sint)y2, 
iJ2 = ( 1 + sin t) Y1 + ( 1 + cos t) Y2 , 

A(t) = [l+cost -(l+sint)] 
1 + sin t 1 + cos t · 

We have 

>.(u) = (1 + cost)(ui + u~) = 1 +cost. 

(3.9) 

(3.10) 

Since >. ( u) does not depend on u, we can immediately calculate the unique Lyapunov 
exponent 

t t 

. 1 I . If >. = hm - >.(u)dT = hm - (1+COST)dT=1. 
t ->oo t t ->oo t 

0 0 

The differential equations governing u are simple enough 

iL1 = (1 +cos t)u1 - (1 +sin t)u2 - >.( u)u1 = - (1 +sin t)u2 

iL2 = (1 +sin t)u1 +(I+ cos t)u2 - >.( u)u2 = (1 +cos t)u1 

and admit two solutions: 

uP) = cos(cost - t), 

ul2) =sin( cost - t), 

u~l) = - sin(cost - t) , 

u~2 ) =cos( cost - t) . 

(3.11) 

(3.12) 

(3.13) 

(3 .14) 

Let us illustrate the " inverse" relation i.e. we use the solutions (3 .13) , (3 .14) of the 
equations (3 .12) to solve the equations of variation (3 .9) . 

Corresponding to (3.3), the first family of solution y(t) can be found in the form 

vF) = P1(t)ul1) = P1(t) cos( cost - t), y~1 ) = p1(t)u~1 ) = P1(t) sin( cost - t) , (3.15) 

where p1(t) is a function to be determined. 
Substituting (3.15) into the first equations of (3.9) yields 

P1 = (1 + cost)p1. (3.16) 
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Hence 

p1(t) = C1et+sint, C1 is arbitrary constant, 

yp ) = C1et+sint cos(cos_t - t), y~l) = - C1et+sint sin( cost - t). 

The second family of solution y(t) corresponding to (3 .14) is: 

yi2) = C2et+sin t sin( cost - t) , y~2 ) = C2et+sin t cos( cost - t). 

C2 is an arbitrary constant. 

Example 5. Consider the equations of variation 

iJ1 = (1 +cos t)y1 + (1 +sin t)y2 , 
i;2 = (1 +sin t)y1 + (1 +cos t)y2, 

A(t) = [1 + c~st 1 + sint] 
1 + sm t 1 + cost · 

We have: 

>. ( u) = 1 + cos t + 2 ( 1 + sin t) u 1 u2 , 

u1 = (1 + sin t)u2(l - 2ui) , 

u2 = (1 +sin t)u1 (1 - 2u~)' 

which admits two constant solutions 

and 

U1 = .J2 
2 ' 

U2 = - .J2 
2 

u1 = u2 = J2 2 . 

The Lyapunov exponents corresponding to (3.23) and (3 .24) are, respectively 

t 

. 1 J [ . .J2 .J2] >.(u) = hm - 1 +COST - 2(1 + SmT)-. - dT = 0, 
t -+oo t 2 2 

0 
t 

. 1 J [ . .J2 .J2] >.(u)= hm - l+ cosT+2(1+smT) - · - dT=2. 
t-+oo t 2 2 

0 

(3 .17) 

(3 .18) 

(3 .19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3 .26) 

Using the solution u (3.23) and its Lyapuhov exponent (3 .25) we can found the first family 
of solut ions y in the form 

(1) ( (1) 
Y1 = Pl t), Y2 = - Pl ( t) . (3 .27) 
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Substituting (3.27) into the first equation of (3.20) yields 

Pi = (cos t - sin t) P1 

from which, it follows: 

The second family of solutions y corresponding to (3.24) , (3.26) is 

Y
(2) - y(2) - c e2tesin t-cos t 
1 - 2 - 2 . 

4. EXAMPLES IN THE CASE GENERAL 

29 

(3.28) 

(3.29) 

(3.30) 

For the general case, we examine two examples. Note that , if it is necessary, the lim 
-- is replaced by lim [2] . 

Example 6. Consider the following equations of variation given by Lyapun~v [2] 

We have 

iJ1 = YI cos ln ( t + 1) + Y2 sin ln ( t + 1) , 

iJ2 = Y1sinln(t+1) + Y2 cos ln(t + 1) . 

..\(u) = (ui + u~) cosln(t + 1) + 2u1u2 sinln(t + 1) 

= cosln(t + 1) + 2u1u2 sinln(t + 1) , 

( 4.1) 

(4.2) 

u i = u 1 cos ln ( t + 1) + u2 sin ln ( t + 1) - ..\ ( u) · u 1 = u2 sin ln ( t + 1) ( 1 - 2ui) , 
(4.3) 

il2 = u1sinln(t+1) + u2 cosln(t + 1) - ..\(u) · u2 = u1sinln(t+1)(1 - 2u§), 

which admits two constant solutions: 

(4.4) 

and 

J2 
U1 = U2 = 2 · (4.5) 

Using (1.2), we can calculate the Lyapunov exponent corresponding to (4.4) 

..\ = lim ~{(t + 1) cosln(t + 1) - 1} = 1. 
t->oo t 

(4.6) 

The same Lyapunov exponent is obtained for (4.5): 

t 

- 11[ . ] -1 A= lim - cosln(T + 1) + sinln(T + 1) dT = lim - (t + 1) sinln(t + 1) = 1. 
t->oo t . t->oo t 

(4.7) 

0 
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From (4 .4), (4 .6) , the first family of solutions of (4.1) can be found in the form 

(1) - t (1) - t 
Y1 - Pie , P2 - - pie · 

Substituting ( 4.8) into the first equation of ( 4.1) yields 

Pi = P1 (cos ln( t + 1) - sin ln( t + 1) - 1) , 

from which, it follows: 

Pi= Cie- t. e(t+ l )cosln(t+ 1), 

Y
(l ) _ C e(t+l) cosln(t+l) y (l ) _ - C e (t+l ) cosln(t+l ) 
i -1 ' 2 - 1 . 

The second family of solutions of (4 .1) corresponding to (4.5) , (4.7) is 

Yi2) = c2e (t+l )sinln(t+l ) = Y~2) 

Example 7. Consider the equations of variation 

(4.8) 

(4.9) 

( 4.10) 

( 4.11) 

(4. 12) 

if 1 = YI cos ln ( t + 1) - Y2 sin ln ( t + 1) A = [cos ln ( t + 1) - sin ln ( t + 1)] ( 4 13) 
iJ2 = Y1 sinln(t + 1) + Y2 cos ln(t + 1) , sinln(t + 1) cos ln(t + 1) · · 

We have 

).. ( u) = ui cos ln( t + 1) + u~ cos ln( t + 1) = cos ln( t + 1) . 

Since ,\.(u) does not depend on u, we can calculate directly the Lyapunov exponent 

t 

).. = lim ~ J cos ln( t + 1) dt = lim ~ { t + 
1 

( cos ln( t + 1) + sin ln ( t + 1)) - ~ } 
t ->oo t t ->oo t 2 ' 2 

0 

- 1( ) - Y2 ( 7f) V2 = lim- cosln(t+l)+sinln(t+l) = lim-sin ln(t +l)+ - = - . 
t ->oo 2 t ->oo 2 4 2 

The differential equations governing u are 

u1 = u1 cos ln ( t + 1) ~ u2 sin ln( t + 1) - ). ( u )u1 = -u2 sin ln( t + 1), 

il2 = u 1 sin ln ( t + 1) + u2 cos ln ( t + 1) - ).. ( u) u2 = u 1 sin ln ( t + 1) . 

The first solution of ( 4.16) is found in t he form 

u 1 = cos e' u2 = sin e. 

Substituting ( 4.17) into the first equation of ( 4.16) yields: 

e = sinln(t + 1), 

(4.14) 

(4. 15) 

(4. 16) 

( 4.17) 

(4 .18) 
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from which, it follows 

I . e = - ( t + I) ( sm ln ( t + I) - cos ln ( t + I)) . 
2 

Using (4.I5), (4.I 7) , and (4.I9), the first of solutions of (4.I3) is found in the form 

(1) v'2t (1) v'2t 
y1 = Pl cos Be 2 , y2 = p1 sin Be 2 . 

On account of (4.I8), substituting (4 .20) into the first equation of (4.I3) gives 

From (4.2I) it follows 
. v'2) p1=p1(cosln(t+I)- 2 . 

Hence 
Pl = c1 e- -If . e!:f-(cosln(t+1)+sinln(t+1)). 

Yl1) = C1 cost~ I ( sinln(t +I) - cosln(t + I))e!:f-(cosln(t+l)+sinln(t+l)), 

y~l) = C1 sin t + I (sin ln(t + I) - cos ln(t +I) )e !:f-(cosln(t+l)+sinln(t+l)). 
2 

The second solution of ( 4. I6) is found in the form 

U1 = cosB, U2 = - sinB 

and the corresponding family of solutions y is 

3I 

(4.I9) 

( 4.20) 

(4.2I) 

( 4.22) 

( 4.23) 

( 4.24) 

yi2) = y~2 ) = C2 cos t ~ I (sin ln( t + I) - cos ln(t + I) )e !:f-(cosln(t+l)+sinln(t+l)). ( 4.25) 

5. CONCLUSION 

In this part II, some examples are presented to confirm that (1.2) is really another 
form of the Lyapunov exponent (I.I) . The use of (1.2) in practice will be treated. 

This publication is completed with the financial support from The Council for 
Natural Science of Vietnam. 
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·vE MOT DANG CUA s6 MU LYAPUNOV . :, .. 
(II: KIEM TRA VA MINH HQA) 

6 phan II, m<?t so thi d\l duqc trl.nh bay cho thay d:;wg (1.2) dung la d9'ng khac ci'ia 
so mu Liapunov (I.I) . 


