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ABSTRACT. This paper applies the genetic algorithm and consequential convex approx­
imation programming to deal with problems of minimizing the strain energy of a linear 

elastic fiber reinforced composite laminate in a state of plane stress. The directions of fibers 

are used as design variables. From the numerical results, an evaluation of two optimization 
techniques is performed. 

1 Introduction 

Fiber reinforced composite materials are ideal for structural applications where high stiff­
ness and strength are required at low weight . Aircraft and spacecraft are typical weight 
sensitive structure, in which composite materials are cost effective. To obtain the full 
advantage of the fiber reinforcement, fibers must be distributed and oriented optimally 
with respect to t he actual strain field. 

Ho11·?ver , due to the objective function and constrains are implicit depending on the 
desivJ. variables, it is impossible to use the traditional optimization methods such as t he 
external penalty, the internal penalty, the Lagrange multiply methods , etc ... to solve 
directly. We must use new methods such as the genetic algorithm and t he sequential 
convex approximation programming to solve. 

2 Behavior theory of the composite laminate in t he p la ne 
stress state [1] 

2.1 Elastic equation in the principle axis 

(2 .1) 
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where: hi: the thickness of ith ply. 

So the elastic relation of the 2n plies composite laminate in the plane stress problem is 
of the form: 

(2.5) 

where: 
Ei - the strain vector of the 2n plies composite laminate, 
Ni - the load vect9r of plane stress mood of 2n plies composite laminate (Fig. l), or 
conversely. 

E = [ :~ l = A-
1 

[ ~~ l 
Exy Nxy 

(2.6) 

The strain energy E of the 2n plies composite laminate is determined by: 

(2 .7) 

We can take the strain energy as the objective function of the problems of composite 
structure optimization. 

3 The genetic algorithn1 (GA) [6] 

Generate 
initial 

population 

start 

Evaluate 
objective 
function 

Generate 
new 
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optimization 
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Mutation 

Best 
individuals 

result 

Fig. 2. Structure of a single population GA 

GA is a stochastic search method that mimics the metaphor of natural biological evolution. 
GA operates on a population of potential solutions applying the principle of survival of 
the fittest to produce better and better approximations to a solution. At each generation, 
a new set of approximations is created by the process of selecting individuals according to 
their level of fitness in the problem domain anQ. breeding them together using operators 
borrowed from natural genetics. This process leads to the evolution of populations of 
individuals that are better suited to their environment than the individuals that they 
were created from , just as in natural adaptation. 
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At the beginning of the computation, a number of individuals are randomly initialized. 
The objective function is then evaluated for these individuals. The first generation is 
produced. If the optimization criteria are not met , the creation of a new generation 
starts . Individuals are selected according to their fitness for the production of offsprings. 
Parents are recombined to produce offsprings. All offsprings will be mutated with a certain 
probability. The fitness of the offspring is then computed. The offspring are inserted into 
the population replacing the parents, producing a new generation. This cycle is performed 
until the optimization criteria are reached. 

4 The sequential convex approximation programmings [2] 

The design optimization problem consists in minimizing an objective function go(X) sub­
jected to behavior constraints gj(X) insuring the feasibility of the structural design. 

. ( ) { 9j(X) ::::; gjax j = 1, ... , m 
mm 90 X , xmin < X· < xmax ,; = 1 n 

i - i - i " ' ... , 

( 4.1) 

The functions gj(X),j = 0, . . . ,mare structural responses (e.g. mass, stresses, dis­
placements, global stiffness) while the design variables xi , i = 1, ... ' n can be t he thickness 
of some structural members, geometric parameters, or fiber orientations for composite 
structures. Their range of variation is defined by lower and upper bounds that reflect 
technological considerations. 
The direct solution of problem ( 4.1) is prohibitive because of the computat ional cost 

of the structural and sensitivity analyses that have to be performed at each iteration 
of the optimization procedure. In the approximation concepts approach , the primary 
optimization problem ( 4.1) is replaced with a sequence of explicit approximated sub­
problems generated through first or second-order Taylor series expansion of the structural 
functions in terms of specific intermediate linearization variables , e.g. direct or reciprocal 
variables . The generated structural approximations, built from the information at the 
current design point , are often convex and separable. A dual formulat ion can then be 
used in a very efficient way for solving each explicit approximated sub-problem. 

Fig. 3. Representation of problem ( 4.1) and its convex approximation 
around the current point Xk 
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The approximation concepts approach consists basically in t he following step~ finite 
element analysis is performed for t he initial design characterized by the values xk of t he 
design variables . 

From the results of the current structural analysis, t hat is the structural responses and 
the sensitivity analyses computations, an approximated optimization sub-problem is gen­
erated. 
The optimization is then performed on the following sub-problem 

. - (X) { gj(X )::; gjax j = 1, .. ., m 
mm go ' xmin < x. < xmax ; = 1 n ' 

i - i - 1.. (J ' •• • , 

(4.2) 

where gj(X) are the approximated structural responses. Because the approximated sub­
problem is fully explicit, convex and separable, it can be efficient ly solved by resorting to 
its dual formulation. 

The solution of t he approximated sub-problem is adopted as a new starting point in the 
design space , and t he optimization process is continued until convergence is achieved. 

k=l 
Initial de sign xk 

At the current Xk, comvute the function gi(X~ 
og -~Xk )/ 

And the gradients J / oX, , j = O, . . ,m;i=l, . ,n 

Generate the approximated functions gi lX) , j=O, .. ,m 

Solve the explicit approximated sub-problem (4. 2) 

k=k+l ; X kt- 1 <=Xk 

No 

end 

Fig . 4. Iterative scheme of the optimization using the approximation concepts 

Approximations of the MMA family (Method of Moving Asymptotes [3] [4]) 

4 .1 Monotonous approximations 

Conlin scheme is a convex approximation based on the first order Taylor series expansion 
in terms of direct and reciprocal design variables . The approximat ion of a design function 
gj(X) is computed based on t he function value and on t he first derivatives at the current 
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design point X k. 

The symbols L+,i and L-,i denote the summations over terms having positive and 
negative first order derivatives. 
In the method of Moving Asymptotes or MMA, Svanberg (1987) generalized Conlin 

scheme by introducing two sets of new paramet ers , the lower and upper asymptotes, Lf 
and Uik, in order to adjust the convexity of the approximation in accordance with the 
problem under consideration. 

- k .~ k ( 1 1 ) ~ k ( 1 1 ) gJ(X)=gJ(X)+~PiJ Uk-X - Uk-Xk +~qiJ X-Lk-Xk-Lk . (4.4) 
+ ,i i i i i -,i i i i i 

In ( 4.4) only one of the two coefficients pfj or q~ is different from zero at the same time 
for one design variable: 

.k { ( k k) 2 agj (Xk) } k { ( k k)2 agj(Xk)} Pij = max 0, Ui - X i [)Xi , qij = max 0, - X i - Li [)Xi . ( 4.5) 

So for each design variable X i , only one asymptote, either L~ or Uik , is used in the 
approximation according to t he design of the first derivative 8gj(Xk) / 8Xi. Therefore, the 
approximation is monotonous, what ever can be t he real behavior of the response function. 
From one iteration to another , the n asymptotes Lf and Uik are updated according to 
heuristic rules ( 4.6) : 

(4.6) , 

proposed by Svanberg (1987) , where t he parameter Si is computed based on the variation 
of t he corresponding design variable values X i wit hin 3 iterat ion steps: 

For two first iteration steps: 

For the third iteration step: 

{ 

0.7 

Si = \2 

if (Xik - x ik- 1)(Xik- 1 - x ik- 2) < o 
if (X ik - x ik- 1)(Xik- 1 - x ik- 2) > o 
if (X ik - x ik- 1)(Xik- 1 - xik-2 ) = o 

4.2 Non-monotonous approximations [3) [4) 

(4 .7) 

(4.8) 

In Svanberg (1995a) , the author derived a Globally Convergent version of the Method of 
Moving Asymptotes 1 (GCMMAl) : 

- k ~ k( 1 1 ) ~ k( 1 1 ) gJ(X) = 9J(X ) + ~PiJ Uk - X - Uk - Xk + ~ qiJ X · - Lk - Xk - Lk . (4.9) 
i = l i i i i i = l i i i i 
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This is an extension of the MMA scheme ( 4.4) , where both Pt and qf; are simultaneously 

non-zero, which means that now both L~ and Uik are used at the same time to generate the 
approximation (4.9) . This leads to the non-monotonous character of the approximation 
as illustrated in Fig. 5. 
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Fig. 5. Approximation of the strain energy g( e) for optimal orientation in a single ply laminate. 
A non-monotonous approximation is advised 

At t he stage k of the optimization process, GCMMAl is defined by the function value 
gj(Xk), the parameters P~j and qt computed based on the first order derivatives, on a 

non-monotonic parameter p~, and by the n pairs of asymptotes L~ and Uik. 

k _ k k 2 PJ k k 
. og·(Xk) { Pij - (Ui - X i) 2(Ui - Li) 
if J < 0 => ( k k ) 

[)Xi qt = (Xf - L~)2 - 8ga~ ) +Pd (Uik - L~) 
(4 .10) 

[) ·(Xk) { pk.= (Uk - Xk)2 ( agi(Xk) + ct(uk - Lk)) ' f 91 O i J i i 8Xi 2 i i 
1 > => . 

8Xi k. = (Xk _ Lk)2r!l_(Uk _ Lk) 
qi] i i 2 i i 

(4.11) 

The non-monotonic parameter and the asymptotes are updated according to rules given in 
Svanberg (1987,1995a) that insures the global convergence property of the approximation 
scheme. 

For the first iteration step: 

o 1 n 1 18g(Xo) l 
p = 5n L xmax - xmin 8X· . 

i = l i i i 

For the kth iteration step: 

{ 
pk = 2pk-l 
pk = pk- l 

if g;k- l(Xk) < g(Xk) 
if g;k- 1 (Xk) 2: g(Xk) 

p must > 0. When pj = 0, one resorts to the monotonous MMA approximation. 
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5 The numerical solution [5] 

The objective function to be minimized is the strain energy of homogeneous symmetric 
laminates including 2 * 3 plies subj ected to restrictions with only the constraints of bound 
of fiber orientation (lower and upper bounds) . Here there are not the behavior constraints 
gj(B). The fiber orientations are the design variables. The t hickness of each plies is 
constant and equal tot = lmm. The iaminate is in a state of plane stress. 
The design optimization problem i8' presented in such t hat : 

min~c:T Ac: (N/mm) 0 S Bi S 180 1 Si S 3 

The data of the problem: 
E x = 1.8E5 (N/mm2) : Elastic module in axis x 
Ey = 0.8E4 (N/mm2) : Elastic module in axis y 

x 

n xy = 0.3 : Poisson factor Ny --
G12 = 0.6E4 (N/mm2) : Shear module ..,_~ 
Nx = 3750 (N/mm): The normal force in the axis .A ~~· ~~~~-Bl[___:~ Y 
Ny= 2500 (N/mm) : The normal force in the axis Y 
Nxy = 5000 (N/mm) : The force in the axis XY 
th=[B1 , B2 , B3 , B3 , B2 , B1]: The 3-variable problem 

The results 

The 3-variable problem GA 
The initial fiber orientations 

The number of iteritions 
The number of calculating 16020 

the objective function 
The optimal fiber orientation B1 = 41.4375 

(degree) B2 = 41.4375 
B3 = 131.4374 

The strain energy (N/mm) 50.5637 
The solving time (second) 34.87 

z 

Fig. 6. T he plane stress problem 

GCMMAl 
B1 = 60 ; B2 = 20 ; B3 = 110 

17 
72 

B1 = 42.5794 
B2 = 40 .5936 

B3 = 131.4599 
50.6057 

9.01 

We apply the sequential convex approximation programming GCMMAl by letting 
e; = X; emin = xmin = O and emax = x:nax = 180 T hen we give t he design variables 

' ' ' i i ' i i . 

(fiber orientations) initial values ei, and calculate t he objective function go(Bk) = ~ET Ac: 

and the first derivatives ogJ(e(k))/oXi· Then we use (4.6) (4.7) (4.8) to calculate L7, Uik; 
use (4. 12) (4.13) to calculate pi ; use (4:10) (4. 11 ) to calculate P7j , qt . Then we use (4 .9) 
to built the approximated function gj ( e) . Then we use traditional optimizat ion methods 
to calculate the new fiber orientations which are adopted as a new start ing point in the 
design space, and the optimization process is continued until convergence is achieved. 
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Evolution of the objective function (the deformation energy) 
120.--~-.~~...-~-.-~~.--~-y-~~.--~-y-~~.--~~ 

100 

80 

60 

40~~~~~~~_._~ ...... ...._~ ........ ~~'--~-'-~--''--~~ thenumberof 
o 2 4 6 8 IO 12 141 16 18 iteritions 

200 

150 

Evolution of the optimwn angle by the method GC1\.1M:Al 

' 
' J I ~ I I i I -----r - ----r- - ---r - - ---r---- -T- - - -- r- - - -- T--- -

IOO --- - -k · - ~ --~ - - ~- -~- M- ·-~4- - --~-- - - -~-~ - ~-~-- -- ·4 - ---~ 
I i ! i t 

9 I : : 

50 - ! - ~ 

0 82 
0 2 4 6 8 IO 12 14 16 

the number of 
18 iteritions 

Fig. 7. The results of the 3-variable problem by the method GCMMAl 

Comments 
GA gives t he best result of the objective function (the lowest strain energy = 50.5637 

N/mm). T he solving time of GCMMAl (9 .01 seconds) is very much faster than of GA 
(34.87 seconds) . 
The number of calculating t he objective function of GA (16020) is too big compared with 

of t he method GCMMAl (72) . So GA will take a very long t ime to solve t he complicat ed 
problems which require building and solving finite element in each iteration to calculate 
t he objective function. 

6 Canel us ion 

This paper has shown how t o apply GA and GAMMAl for composite structure optimiza­
t ion. 

From t he results of t he numerical solut ion , we can conclude about two different optimiza­
tion t echniques in the frame of the design of composite structures in following: 

GA: is a general method t o solve the opt imization problem in many fields . T his algorithm 
gives the better results t han t he sequent ial convex approximation programmings (the strain 
energy is lower) . However, due t o its general character , t his method requires t he long t ime 
to solve. 

GCMMAl: This method also give t he exact results. Alt hough , t hese results are a little 
worse than those of GA, but t he solving time of the sequential convex approximation 
programming is very much faster than that of GA. So, this method is very suitable to 
solve the big optimization problems. 
The study is implemented partly wit h t he financial support from t he Viet nam National 

Council of Natural Sciences . 
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AP Dl)NG GIAI THUAT m TRUYEN vA QUY ROACH XAP xi LOI TUAN 
TV CHO BAI TOAN TOI uu HOA CAU TRUC COMPOSITE 

Bai bao ap d\lng gi:H thu~t di truyen va quy ho~ch xap xi loi tua n t\l' de giai bai toan 
C\l'C t ieu nang lm;mg bien d~ng cua tam lamiate composite dt.rQ'C gia Ct.rang SQ'i dan hoi 
tuyen tfnh trong tr~ng thai ung suat ph!ing. Bien t hiet ke la sqi cua cac l&p. Tu ket qua 
so, da dt.ra ra nh~n xet danh gia hai phmmg phap. 
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