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ON A SAFETY CRITERION FOR 
COLUMN-LIKE STRUCTURE 

NGUYEN TIEN KHIEM 

Institute of Mechanics 

ABSTRACT. The practical exploitation of engineering structures needs very much a sim
ple criterion for checking safety of structures instead of reliability index that is very difficult 
to be computed within the probabilistic theory. This paper deals with establishment of a 
simple criterion for checking safety of column-like structure based on deterministic analysis . 
The criterion consists of bound of the flexural displacement at the top of column that is 
conducted from the displacement analysis combined with ultimate state for the structure. 

1 Statement of pro bl em 

Checking safety of operating structures is an important prob
lem in structural engineering. There are various safety crite
rias based on different concepts of limit states of structure. 
That is the ultimate , serviceability or fat igue limit structural 
states. The present investigation is concerned with the ser
viceability safety of structure and aimed to determine max
imal allowable deflection of a column-like structure under 
flexwral as well as axial load. 
The commonly used criterion for checking the safety is based 
on comparison of load effect denoted by Q with the resis
tance or strength of material R. T he safety criterion in 
deterministic analysis therefore takes the form 

Q--< R 

and limit state is represented by following equation 

R - Q = 0. 

p .l) 

(1.2) 

The load effect Q in the case of safety is represented by deflect ion w of structure under 
a load P and the equation (1.2) results in maximal allowable deflect ion w* that due to 
equation ( 1.1) leads to the safety criterion 

w::; w* . (1.3) 

In this study a vertical column consists of a beam with a concentrated mass M at upper 
end and clamped at the lower one as shown in Fig. 1 is considered. It's, furthermore, 

226 



assumed that the beam is subjected to a flexural distributed load with density q(x), so 
that equation for flexural deflection ( w ( x)) has the form 

fP [ fPw ] o [ ow ] 
ox2 EI ox2 +ox pox = q(x) , 

where P = Mg, or 

::2 [EI;:~ + Pw] = q(x). 

. . o2f 
Lettmg f(x) be a function such that -

2 
= q(x), one will get t he equation 

ox 

::2 [EI~:~+ Pw - f(x) ] = 0, 
which consequently yields t he equation 

82w 
EI fJx 2 + P(w - Cx - D ) = f (x). 

Introducing the notations 

u = w - Cx - D, 
2 p 

A =EI' 

we obtain the final equation 

1 
u"(x) + >.2u(x) = EI J (x). 

General solution of the later equation (1.5) has the form 

so that 

x 

u(x) = Acos>.x + Bsin>.x + (l/>.EI) j f(s) sinA(x - s)ds , 

0 

x 

(1.4) 

(1.5) 

w(x) = Acos>.x + Bsin>.x + Cx + D + (1/ >.EI) j f (s) sin>. (x - s)ds . (1.6) 

0 

Constants A, B , C, D are determined using boundary conditions at both ends of the beam. 

2 Buckling condition 

Firstly, one will consider the case when q(x) = 0 with the boundary condition of ideal 
cantilever beam 

w(O) = w'(O) = w"(L) = w"'(L) + >- 2 w'(L ) = 0, (2.1) 
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that in combination with (1.6) yields the system of equations 

A+ D = O; B>. + C = O; A cos >.L + B sin >.L = O; 

>.3Asin>.L - >.3 Bcos>.L - >.3Asin>.L + >.3 Bcos>.L - >. 2C = 0. 

From the algebraic equation it gives immediately B = C = 0 and A cos >.L = 0. The last 
equation has nontrivial solut ion if 

cos>.L = 0 (2.2) 

or >.L = (n - 0.5)7r , n = 1, 2, 3, .... and in consequence 

(2 .3) 

So that , stability condition for the beam is 

(2.4) 

Now we are going to consider t he beam with flexible connection at the lower beam end 
x = 0. Suppose that the connection may be treated as a rotational spring of t he stiffness 
K such t hat boundary condition for the beam can be written as 

w(O) = Eiw"(O) - Kw'(O) = w"(L) = w'"(L) + >.2w'(L) = 0. 

Substituting (1.6) into (2 .5) leads to the equations 

A+D=O; - >. 2 EI·A - K·(B>.+C) =0; - >.2 Acos>.L->.2Bsin>.L=O; 

>.3 Asin>.L - >.3 B cos >.L - >.3 Asin>.L + >.3 B cos >.L - >.2C = 0, 

from which one gets C = 0 and 

A cos >.L + B sin >.L = O; >.EI · A + K · B = 0. 

Condition for existe11ce of nontrivial solution has the form 

or 

with the notations 

K cos >.L - >.EI sin>.L = 0 

f3 tgf3 = k, 

1 KL 
f3 = >.L; k = µ = EI . 

(2.5) 

(2 .6) 

(2 .7) 

Suppose that solutions of equation (2 .6) are f3j = f3j(k), j = 1, 2, 3, ... ,it is easy to verify 
that 

and 
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So, the critical value of compressing load is 

p = p = a2(k)EI 
n /Jn £2 (2 .8) 

and the stability condition takes the form 

(2.9) 

The inequality (2 .9) implies that the column with flexible clamp is less stable than the 
cantilever one. 

3 Safety criterion in displacement 

In general case, i. e. when q(x) =f- 0, deflection curve has the form 

x 

w(x) = A cos.Ax+ Bsin.Ax + Cx + D + .\~I J f(s) sin .A(x - s)ds ; 

0 
x 

w'(x) = - .\A sin.Ax + .\B cos>-x +C + ~I j f(s)cos.A(x - s)ds; (3.1) 

0 
x 

w" ( x) = - A2A cos .Ax - .A 2 B sin .Ax - : I j f ( s) sin .A ( x - s) ds + f ~ ~) ; 
0 
x 

"'( ) 3 3 >-
2 J ( ) ( ) f'(x) w x = ,A A sin .Ax - .A B cos .Ax - EI f s cos .A x - s ds + EI . 

0 
By analogy to the above, we distinguish two cases, rigid and flexible clamp of column 

and let 's go to consider both them. 

3. 1 Cantilever beam 

In this case, the boundary conditions are 

w(O) = w'(O) = w"(L) = w111 (L) + .A2w'(L) = 0 

and therefore one obtains 

A+ D = O; B.A + C = O; 

L 

f(L) >-
2 J A cos .AL + B sin .AL = ~EI - EI f ( s) sin .A ( L - s) ds. 

0 
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Let the function J ( x) be chosen so that it satisfies equations 

f(L) = J'(L) = 0, 

which results in B = C = 0 and 

L 

A cos>.L = - >.~I J J(s) sin>.(L - s)ds. 
0 

The last equation has nontrivial solution if 

then 
cos>.L # 0, 

L 

1 J . A= - >.EI cos >.L f(s) sm>.(L - s}ds. 
0 

Substituting the obtained constants A, B, C, D into (3.1) one will have 

L x 

1 - cos >.x J 1 J 
w ( x) = >.EI cos >.L f ( s) sin >. ( L - s) ds + >.EI f ( s) sin >. ( x - s) ds . 

0 0 

Using equation (3 .4) , the deflection at the column top can be calculated as 

L 

w(L) = ).. 
1 

).. J f(s) sin>.(L - s)ds . 
EI cos L 

0 

Furthermore, letting>. --+ O(i . e. there is no compressing load P = 0) , one obtains 

L 

1 J sin >. ( L - s) 
lim w(L) = EI f(s)(L - s) lim '(L ) 'Lds 

.A. --->O .A. --->O A - S COS A 

0 

L 

=~I J f(s)(L - s).ds 
0 

3.2 Column with flexible connection 

Equations (3 .1) with the boundary conditions (2.5) yields the system of equations 

A + D = O; C = O; >. 2 EI · A + >.K · B = f ( 0). 
L 

A cos >.L + B sin >.L = -(1/ >.EI) J f(s) sin>.(L - s)ds. 

0 

Letting ~ = >.. 2 EI sin >.L - >.K cos >.L, one will have 
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A = (!/ Ll.) { J(O) sin.\£+ (K /EI)) t J(s) sin,\(£ - s)ds} ; 

B ~ (-1/ Ll.) { f(O) cos,\L + ,\ t f(s) sin.\(£ - s )ds} . 

Finally, the deflection curve and deflection at the column top are respectively 

x 

(3.7) 

w(x)=A(cos>.x-l)+Bsin>.x+ >.~I j f(s)sin>.(x-s)ds , (3.8) 
0 

L 

w(L) = A(cos>.L - 1) + Bsin>.L +>.~I j J(s) sin>.(L- s)ds . (3.9) 

0 

Under >. approaching to zero one has got 

l~ w(L) ~ (!/ K) [t (O)L + (1/ .\EI)/ f (s)(L - s)ds] · (3.10) 

3.3 The case of concentrated flexural loading 

Let's consider the case when q(x) = Qo6(x - xo), then we will have a boundary problem 

J"(x) = Qo6(x - xo) , j(L) = j'(L) = 0. 

the general solution of which is 

C D { 
0 for x ::; xo 

f(x) = x + + 
Qo(x - xo) for x ::=:: xo 

Satisfying the boundary conditions leads to 

D = j(O) = Qoxo , C = j'(O) = -Qo , 

thus 

{ 
0 for x < xo 

J(x) = - Qox + Qoxo + Qo(x - xo) for -x ~ xo ={ Qo(xo - x) for x::; xo 
0 for x ~ xo 

Using this function f ( x) one can calculate the integral 

L xo 
J = J J(s) sin>.(L - s)ds = Qo J (xo - s) sin>.(L - s)ds = 

0 0 
xo 

= Q0L2 J (x0 - s) sin/3(1 - s)ds = QoL2G(xo , /)); 
0 
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where /3 = >.L; xo = xo/ L and 

1 
G(xo,{3) = - (32 [sin/3(1 - x0 ) + (3x0 cosf3 - sin/3] . (3.12) 

Furthermore, it can be calculated the limit 

1. c( - (3) 0 1. G(xo, /3) x6(3 - xo) 
lm Xo, = ; lm = . 

f3-;0 /3 --;0 f3 6 
(3.13) 

Therefore, deflection at the top of column in rigid and flexible connection respectively will 
take the form 

and 

L 
1 j . Q0 L3G(x0 , (3) 

w1(L)= >.Eicos>.L f(s)sm>.(L - s)ds = EI(3cosf3 
0 

w
2
(L) = QoL

3 
xoµsinf3 + G 

EI f3 cos f3 - (3µ sin f3' 

after the constants have been calculated as 

A= QoL3 xo sin/] + kG . B = _ Q0 L3 x0 cos/]+ /]G 
EI /3 /3 sin /3 - k cos /3 ' EI /3 /3 sin f3 - k cos f3 ' 

µ = 1 / k = EI/KL ( = 0 as K ____, oo). 

Approaching >. to zero, one could obtain the deflections at the column top as 

3.4 Safety criterion or maximal deflection of the column top 

(3 .14) 

(3 .15) 

(3.16) 

It is well known that the stress of a cantilever beam used in checking its load-carrying 
capacity is 

MD 
(} = 21' 

where M - bending moment at the lowest section, D characteristic diameter of t he cross 
section and I is sectional moment of inertia. Let the stress limit for the material be 
denoted by [(}], so that it must be satisfied the condition 

(3.17) 

From the condition (3.17) it 's seen that for checking the beam load-carrying capacity the 
bending moment at lower end of column 
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M = Eiw"(O) = ->.2 EI · A+ f(O) . 

should be calculated. In the case of rigidly cant4'ey,ered column one has 

L 

M = f(O) + cos\L J J(s) sin>.(L - s)ds. 
0 

For the concentrated load it takes the form 

M = Qoxo + QoL2 >..G/ cos j3 = Q0 L [x0 + j3G/ cos/3] = 
= QoL [(sin/3 - sin/3(1 - x 0 )) /j3 cos f3] 

If there is no axial loading, the moment would be 

lim M = QoLxo = Qoxo 
/3 ->0 

and the condition (3.17) gives 

or 

3w10xoDE 
L3x6(3 - xo ) s [lT] 

_ w10 [ - ] [lT] io(3 - x0 ) 
W10 = L s W10 = E1 3 ' (3. 18) 

where r = D / L representing the t hinness of the beam. The function x(l - x/3) in the 
interval [0 ,1] reaches maximum value at x = 1 and equals 2/3, so that the maximal allowable 
deflection at the column top in this case is 

[ - ] = 2[0"] = 2L [lT] 
Wm 3E1 3D E . 

For steel , when ~] = 0.1% the limit deflection could be much more simplified as 

L 
[w10] = 15D (%) . 

In the case of presence of axial load condition ( 3 .1 7) takes t he form 

lT = w1 DE f3cos f3 [sin f3 - sin f3(1 - xo)] < [lT]. 
L L 2 G f3 cos f3 -

Furthermore, the limit deflection can be determined as follows 

W1 [a] 
w1 =Ls [w1] = E

1
H1( f3,xo) , 

({3 
_ ) _ 2 [f3x0 cos f3 +sin {3(1 - x0 ) - sin /3] 

where H1 , xo - {32 [ . f3(l _ ) . f3] . sm - xo - sm 
It 's easy to get 
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. _ _ 3 - xo 
lim H1(f3, xo) = xo--, 
{3 -+0 3 

which shows that the equation (3.18) i~~ particularity of the equation (3 .20). 
In the case of flexibly cantilevered column, using the expressions of the constant A and 
deflection at the column top, the moment can be calculated as 

M _ Q Q Lf3(G + xoµsinf3) Q L [- {3(G + x0µsin/3) ] 
- OXO + 0 = 0 XO + - - ---- -

COS/] - f3µsin/3 cos/3 - f3µsin/3 

= QoL [sin /3 - sin /3( 1 - x0 )] . 

f3(cosf3 - f3µsin/3) 

So that the condition (3.17) leads to t he equation 

- W2 < [- l [CT] H(/3 - ) 
w2 = L - w2 = Er 'µ, xo ' (3 .21) 

where 

H( /3 x) = 2 [/3xo(cosf3 - f3µsin/3) + sin/3(1 - x0 ) - sin/3] 
, µ , 0 /32 [sin/3(1-xo)-sinf3] 

(3 .22) 

The later function has the limit lim H({3, x0 ) = 2µ + x0 (3 - x0 )/3, so that maximal 
(3 -+0 

allowable deflection at the top of the flexibly cantilevered column without axial load takes 
the form 

[- ] - TI [ xo(3 - xo)] 
W20 - E1 2µ + 3 . (3 .23) 

The formula (3.23) shows that flexibility of the connection increases the safety margin of 
the column in deflection and if µ = 0 the equation becomes (3 .18) . 

The effect of axial load, position of flexural load application and flexibility of connection 
on the safety margin of the column can be studied by consideration of graphics of the 
function (3 .22) with respect to parameters {3 , xo, µ. The Fig. 2 shows the graphics of the 
function H versus f3 with different values of parameters xo, µ . Namely, four pictures given 
in Fig. 2 correspond to four values ofµ = O; 0.1; 0.3; 0.5 and in each picture there are 
10 curves correspondingly to 10 values of x0 = 0.1 - 1.0. It is clear that the coefficient H 
increases with increasing ofµ, that implies enlargement of safety margin when connection 
becomes more flexible. It is also seen that the higher coefficient H is the closer position 
of load application to column top will be. The higher point flexual load application is, 
the more safety margin of the beam in top displacement. In each pictures mentioned 
above one can recognize that all curves with different values of xo intersect at a point 
corresponding to /3 which is the solution of the equation (2 .6) or f3tgf3 = 1/ µ. From the 
first picture in Fig. 2 corresponding to µ = 0 (rigid connection or ideal clamp) it's seen 
that the intersection point is /3 = 7r /2. 
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Fig. 2 

4 Conclusion 

Thus, in this paper the results have been newly presented as follow: 

• The stability condition for column with flexible connection with base has been con
ducted by the well known classical method. The obtained criterion shows that the 
critical load in case of flexible connection becomes less than that of rigid connection, 
i. e. flexible connection with base makes the column less stable. 

• The safety criterion with respect to maximal deflection of column under both the 
flexural and axial loads was obtained in general case of boundary connection and 
loading. The result shows that the maximal deflection is reached when flexural is 
applied to the top of column and flexibility of connection at the base enlarges t he 
safety margin (limit deflection at the top) . 

• T he obtained results can be applied instantly to checking the safety of structures 
operating in Vietnam shelf. 
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VE MQT DIEU KI~N AN TOAN KET CAU CONG TRINH DANG CQT 

Hi~n nay trong thvc t e khai thac sd. d\mg cac cong trlnh, d~c bi~t la cong trlnh t ren 
bien rat can m9t tieu chuan an toan dun giin va de ap dvng, khong phii Ia dieu ki~n an 
toan phuc t9-P nhu trong ly thuyet di;> tin c~y quy dinh. Bai bao nay c6 ill\lC dich dua 
ra m<;>t dieu ki~n dcm giin de kiem tra danh gia d9 an toan cua cong trlnh d9-ng c<;>t dung 
du&i tac di;>ng cua titi tn;mg ngang va dQC trl,lC. Dieu ki~n an toan nay dm;rc bieu dien 
bang chuyen v! l&n nhat c6 the cua dinh c9t dm:;rc xay d\mg d11a tren lai giii bai toan 
chuyen v! ket hqp v&i dieu ki~n t&i h9-n ben thong thm:mg. 
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