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ABSTRACT Robots manipulators are multibody systems with tree structures. In this 
paper the theoretical background of the computer program RobotDyn is presented. The 
program is developed using Lagrange's equations and Denavit-Hartenberg matrix. The 
dynamic simulation of the Robot SCARA with four degrees of freedom is considered as an 
example of application of the program RobotDyn. 

1 Int roduction 

The simulation of robotic manipulators is a very important issue. Dynamic simulation is 
usually performed in two steps: 
(1) generation of the dynamics model and 
(2) solution of the model. 
Since t he dynamics equations of robot manipulator are highly nonlinear and coupled, the 
analytical solution of such equations is thought to be impossible. Hence numerical ap­
proaches have to be used. The development of the computer-oriented methods for t he 
generation of dynamic robot models can roughly be divided into three groups: 

1. Numerical methods, 

2. Numerical-symbolic method, 

3. Symbolic methods. 

This is also the chronological order of development of t he modeling techniques. The later 
the model appeared, the less computational harden it offered. Naturally, the model gen­
eration algorithms are more and more complex. 
In t his paper , the generation of t he dynamic model of robot manipulators using t he La­
grange's equations is revised. A computer program for the dynamic analysis of Robots 
based on Maple Software is built at the Hanoi University of Technology, and called as pro­
gram RobotDyn. The RobotDyn program has often been used for analysis of the Robot 

' manipulators. 
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2 Theoretical background of the software RobotDyn 

2.1 The D enavit-Hartenberg Matrix 

In order to compute the direct. kinematics equat ions for an open-chain manipulator , sys­
tematically general methods are to be desired to define the relative position and orientation 
of two consecutive links and t he problems is that to determine two frames attached to the 
two links and compute the coordinate transformations between them. In general, the 
frames can be arbitrarily chosen as long as they are attached to the link that are referred 
to. Nevertheless, it is convenient to set some rules also for the definition of t he link frames. 
With reference to Fig. 1, let axis i denote the axis of the joint connecting link i - 1 to 
link i , the so-called Denavit-Hartenberg convention adopted to define link frame i [1,2]. 
The resulting coordinate transformation is obtained by postmultiplication of the single 
transformations as [1, 2, 3,10] 

[Cose, - sin ei cos °'i sin ei sin °'i 
"'cos e, l 

i- l H i = H i= sinei cos ei cos °'i - cos ei sin °'i ai sinei .(2 .1) 
0 sin ai cosai di . 

0 0 0 1 

Notice that the transformation matrix from frame i to frame i - 1 is a function only 
of the joint variable % t hat is ei for a revolut ion joint or di for a prismatic joint. 

joint i-1 

Fig 1. The DH parameters 
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The transformation matrix (2 .1) can be rewritten in the form 

. - [i- 1 Ai i- lPi] 
Hi - 0T 1 . (2 .2) 

The coordinate transformation describing the position and orientation of frame i with 
respect to frame 0 is given by 

[oA Op] [A p] Ti = H1H2 .. . Hi = oTi 1 i = o,; 1' . (2 .3) 

The angular velocity of the link i may be defined from components of the transformation 
matrix Ai and its time derivative Ai . 

- 1 T . 
w i = (Ai) Ai . 

The vector locates in the reference frame Ro is given as 

r ci =Pi+ Ais~; · 

The time derivative of (2 .5) yields 
. . A. I 

vc; = r ci =Pi + isc;· 

2.2 Lagrange's equations of motion of Robot Manipulators 

The Lagrange's equations of motion can be written in t he following form 

!!__ ( 8T) _ 8T = _ 8IT + Q'k (k = l , . .. ' n) . 
dt fJqk fJqk fJqk 

(2.4) 

(2 .5) 

(2 .6) 

(2 .7) 

In the equations ( 2. 7) T is the kinetic energy, IT is the potential energy, Q'k represents 
nonconservative forces. For the Robot manipulators , t he kinetic energy has the following 
form [3] 

T(q, q) = ~ t t mij(q)q/lj . (2.8) 
i=l j=l 

The potential energy associated with the gravity 
n n 

IT = - L migirc; = L m igT r ci . (2.9) 
i=l i=l 

An explicit form of the generalized forces is given as follows : 

N - M -

Q* ="ff: 8ri "M aej 
k ~ ia + ~ Ja 

i=l qk i=l qk 

N >::>- M >::> -

= L~~~i + L:Mj ~~j 
i=l qk i=l qk 

(k = 1, · · · , n). (2 .10) 

where ~ and Mj are respectively the force and moment vectors , while iJi and Wj are the 
corresponding linear and angular (absolute) velocities . 
Taking the derivatives required by Lagrange's equations in (2 . 7) and recalling that IT does 
not depend on q yields . 
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where 

Read Data (DH, parameters) 
i=1;T=E,L=O 

gT =[gx gy g,] 

Hi= DH Matrix( .. . ) 

START 

Po, = submatrixl(T, 1..3,4 . .4) 

1 1T 1 1 T 
-2 ffi ; I c co +-2 m;V c V c 

' ' ' 
K; 

true 
14------i=i+Ii+-----<-

II . = m.gTrc 
' l i 

false 

END 14--~fi ( ~ J-( ~ J = r; ( i = 1.. .n) 
'---------' 

Fig 2. The algorithms structure of the program RobotDyn 

n n n 

L mkj (q)qj +LL hkij(q)qiqj + gk(q) = Tk, 
j = l i= l j = l 
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Tk : is the generalized force associated with the generalized coordinate Qk. 

In sum, the equations of motion in (2.11) can be rewritten the matrix form which represents 
the joint space dynamic model 

M(q)q + B(q, q)q + g(q) = T. (2.13) 

The computer program RobotDyn is based on the kinematical analysis with method 
Denavit-Hartenberg matrix and the dynamical analysis with Lagrange Equations as pre­
sented above. The algorithms structure of the program RobotDyn is show in Fig. 2. Some 
examples on the automatic derivat ion of the motion equations of industrial robots with 
Maple are presented in [6,7,8 ,9]. 

3 Dynamics model of the SCARA with four degrees of 
freedom 

As an example of t he application of t he software RobotDyn let us consider the model 
. of Robot SCARA with four degrees of freedom shown in Fig. 3, for which t he vector of 

generalized coordinates is Q = [Bi , B2 , B3, d4]T = [qi , Q2 , q3 , q4]T . 

Fig. 3 . Model of Seara Robot with four DOFs 

The D-H Parameters table of SCARA robot has the following form 

Table 1 

link e d a 

1 qi di ai 

2 Q2 d2 a2 

3 q3 0 a3 

4 0 q4 0 
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Table 2 

link center of gravity inertial matrix 
mass 

Xe Ye ze - I xx Iyy Izz Ixy Ix z Iyz 
1 -(a1 - l1) 0 0 m1 fi x !iy fi z 0 0 0 
2 -(a2 - l2) 0 0 m2 h x hy I2 z 0 0 0 
3 - (a3 - l3) 0 0 m3 fsx /sy fsz 0 0 0 
4 0 0 - l4 m4 f4 x f4y f4 z 0 0 0 

Oversimplify we use following notations 

c1 = cosq1 , c2 = cosq2, c3 = cosq3, c12 = cos(q1 + q2) , c23 = cos(q2 + q3) , 

c123 = cos(q1 + q2 + q3), s1 = sinq1, s2 = sinq2, s3 = sinq3, s12 = sin(q1 + q2) , 

s23 = sin( q2 + q3) , s123 = sin( q1 + q2 + q3), 

dqi = ~~i ; ddqi = :t ( ~~i ) . 

Using the software RobotDyn we obtain the differential equations of motion of the SCARA 

robot 

T1 =Mnddq1 - 2dq2a1dq1l3m3s23 - 2dq3a1s23dq2a3m4 

- 2dq3a1s23dq2l3m3 + M14ddq4 + M13ddq3 - dqja1s23a3m4 

- dqja1s23l3m3 - dqjs3a2l3m3 - dq~a1s2a2m4 - dq~a1l3m3s23 

- dq~a1a3m4s23 - dq~a1s2m2l2 - dqia1s2a2m3 - dqjs3a2a3m4 

- 2dq3s3a2dq1a3m4 - 2dq3s3a2dq2l3m3 - 2dq3s3a2dq2a3m4 

- 2dq3a1 s23dq1 l3m3 - 2dq3a1 s23dq1 a 3m4 - 2dq2a1 dq1 s2a2m4 

- 2dq2a1 dq1 s2a2m3 - 2dq2a1 dq1 a3m4s23 - 2dq3s3a2dq1 l3m3 

- 2dq2a1dq1s2m2l2 + M12ddq2 

T2 =M21ddq1 - M22ddq2 + M23ddq3 + M34ddq4 - dqjs3a2a3m4 

- dqj s3a2l3m3 - 2dq3s3a2dq2a3m4 - 2dq3s3a2dq2l3m3 

- 2dq3s3a2dq1a3m4 - 2dq3s3a2dq1l3m3 + dqia1a3m4s23 

+ dqra1l3m3s23 + dqra1s2a2m3 + dqra1s2a2m4 + dqra1s2a2m4 + dqra1s2m2l2 

T3 =M31dd1 + M32ddq2 + M33ddq3 + M34ddq4 + a3m4dqis3a2 

+ ddqia1a3m4s23 + 2a3m4s3dq2a2dq1 + a3m4a2dqis3 

+ l3m3dqis3a2 + dqia1l3m3s23 + 2[sm3s3dq2a2dq1 + l3m3a2dqis3 
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where 

M n =I1z + m1lI + I2 z + m2ai + 2m2a1l2c2 + m2l§ + hz + m3a§ 

+ 2m3a2a1c2 + 2m3a2l3c3 + m 3ai + 2m3a1l3c23 + m3l~ + f4z + m4a~ 
+ 2m4a3a2c3 + 2m4a3a1 c23 + m4a~ + 2m4a2a1 c2 + m4ai 

M12 =hz + m2a1l2c2 + m2l§ + hz + m3a~ + m3a2a1c2 + 2m3a2 l3c3 

+ m3a1l3c23 + m3l~ + f4 z + m4a~ + 2m4a3a2c3 + m4a3a1c23 + m4a~ + m4a2a1c2 

M24 =0, M33 = hz + m3l~ + f4 z + m4a~ , M34 = 0, M43 = 0, M44 = m4 

For numerical calculation it is necessary to specify the dynamic parameters of this robot , 
which are arbitrarily assigned as 

m1 = 5kg , 

a1 =0 .35 , 

di =0 .5m, 

2 I _ m 1a 1 
l z - 12 ' 

m2 = 3.5kg , m3 = 3kg , m4=2kg 

a2 = 0.25 m , a3 = 0.1 m 

l _ a1 l _ a2 l a3 
1 - 2 2 - 2 ' 3 = 2 ' 

2 
I - m2a2 

2z - 12 ' 

2 
I - m3a3 

3z - 12 ' f4 z = 0.01 kgm2. 

Suppose t hat the motion equations of the end-effector are given by: 

where 

cp(t) = 

{

XE = 
YE = 
ZE = 
e = 

0.3 + 0.15 cos cp 
0.2 + 0.15 sin cp 

sin c~n 
q1 + q2 + q3 = 0 

when 0 ::; t ::; ?f 

1 ~2 aT3 - {6aT2t + ~aTt2 - iat3 when T_ < t < 3T 
4 - - 4 

- 13 aT3 - 1. aT 2t - 1.aTt2 + 1.at3 when 3T < t < T 96 2 2 6 4 - -

27r 
a = 32 - = n T = 4s . 

64 ' 
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Fig. 4. Posit ion, velocity, acceleration Fig. 5. Position, velocity, acceleration 
and driving moment curve of the joint 1 and . driving moment curve of the joint 2 
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and driving moment curve of the joint 3 
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The inverse kinematics problem consists of the determination of the joint variables 
(q1 , q2, q3, q4) corresponding to a given end~effector position and orientation 

(3.4) 

The final step in solving for the .inverse dynamics is to calculate torque at each joint . 
The torques T1 , T2, T3 and T4 needed at the joints are found from equations (3.1) after 
considerable derivation steps. 
Some calculation results are shown in Fig. 4, 5, 6 and 7. Fig. 4 shows the position, velocity, 
and acceleration curve and driving moment curve of the joint 1. Fig. 5 shows the position, 
velocity, and acceleration curve and driving moment curve of. the joint 2. Fig. 6 shows the 
position, velocity, and acceleration curve and driving moment curve of the joint 3. In the 
Fig. 7 there are the similar curves of the joint 4. 

4 Conclusion 

Robot manipulators are multibody systems with tree structures . At the Hanoi Univer­
sity of Technology a computer program to dynamics analysis of robot manipulators with 
Maple is established. As an example of application the computer simulation of the inverse 
dynamics of the SCARA robot is presented. 
This paper is completed with the financial support from the National Basis Research 
Program in Nature SciencPs. 
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MO PHONG DQNG Ll)C HQC ROBOT BANG PHAN MEM ROBOTDYN 

Robot fa h~ nhi8u v~t c6 cau true cay. Trong bai bao nay trlnh bay CCY s& ly thuyet 
xay d11ng h~ chuang trlnh RobotDyn. Chuang trlnh am;rc thiet l~p d11a tren phuang 
trlnh Lagrange va phuang phap ma tr~n Denvit-Hartenberg. Robot SCARA vCii bon b?c 
t11 do OU'Q'C lay lam vi dv de minh hoc;t cac thu~t toan cua chuang trlnh. 
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